首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Sustainable limits to crop residue harvest for bioenergy: maintaining soil carbon in Australia's agricultural lands
Authors:Gang Zhao  Brett A Bryan  Darran King  Zhongkui Luo  Enli Wang  Qiang Yu
Institution:1. CSIRO Ecosystem Sciences and Sustainable Agriculture Flagship, Urrbrae, SA 5064, Australia;2. Crop Science Group, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn D‐53115, Germany;3. CSIRO Land and Water, Black Mountain Canberra, ACT 2601, Australia;4. Plant Functional Biology and Climate Change Cluster, School of the Environment, University of Technology Sydney, Sydney, NSW 2007, Australia
Abstract:The use of crop residues for bioenergy production needs to be carefully assessed because of the potential negative impact on the level of soil organic carbon (SOC) stocks. The impact varies with environmental conditions and crop management practices and needs to be considered when harvesting the residue for bioenergy productions. Here, we defined the sustainable harvest limits as the maximum rates that do not diminish SOC and quantified sustainable harvest limits for wheat residue across Australia's agricultural lands. We divided the study area into 9432 climate‐soil (CS) units and simulated the dynamics of SOC in a continuous wheat cropping system over 122 years (1889 – 2010) using the Agricultural Production Systems sIMulator (APSIM). We simulated management practices including six fertilization rates (0, 25, 50, 75, 100, and 200 kg N ha?1) and five residue harvest rates (0, 25, 50, 75, and 100%). We mapped the sustainable limits for each fertilization rate and assessed the effects of fertilization and three key environmental variables – initial SOC, temperature, and precipitation – on sustainable residue harvest rates. We found that, with up to 75 kg N ha?1 fertilization, up to 75% and 50% of crop residue could be sustainably harvested in south‐western and south‐eastern Australia, respectively. Higher fertilization rates achieved little further increase in sustainable residue harvest rates. Sustainable residue harvest rates were principally determined by climate and soil conditions, especially the initial SOC content and temperature. We conclude that environmental conditions and management practices should be considered to guide the harvest of crop residue for bioenergy production and thereby reduce greenhouse gas emissions during the life cycle of bioenergy production.
Keywords:bioenergy  crop model  lignocellulosic biofuel  management  residue harvest  soil carbon  sustainability
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号