首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   121406篇
  免费   7163篇
  国内免费   8718篇
  2023年   1328篇
  2022年   1486篇
  2021年   2683篇
  2020年   3143篇
  2019年   4757篇
  2018年   3585篇
  2017年   2821篇
  2016年   3213篇
  2015年   4351篇
  2014年   6443篇
  2013年   8571篇
  2012年   5337篇
  2011年   7187篇
  2010年   5354篇
  2009年   5697篇
  2008年   6060篇
  2007年   6190篇
  2006年   5548篇
  2005年   4930篇
  2004年   4284篇
  2003年   3730篇
  2002年   3236篇
  2001年   2508篇
  2000年   2161篇
  1999年   2232篇
  1998年   2036篇
  1997年   1768篇
  1996年   1598篇
  1995年   1842篇
  1994年   1743篇
  1993年   1549篇
  1992年   1567篇
  1991年   1317篇
  1990年   1151篇
  1989年   1080篇
  1988年   1041篇
  1987年   1025篇
  1986年   721篇
  1985年   1227篇
  1984年   1656篇
  1983年   1224篇
  1982年   1580篇
  1981年   1136篇
  1980年   1147篇
  1979年   1045篇
  1978年   627篇
  1977年   533篇
  1976年   451篇
  1975年   350篇
  1973年   339篇
排序方式: 共有10000条查询结果,搜索用时 142 毫秒
81.
《Cytokine》2015,73(2):224-225
Balanced regulation of cytokine secretion in T cells is critical for maintenance of immune homeostasis and prevention of autoimmunity. The Rho-associated kinase (ROCK) 2 signaling pathway was previously shown to be involved in controlling of cellular movement and shape. However, recent work from our group and others has demonstrated a new and important role of ROCK2 in regulating cytokine secretion in T cells. We found that ROCK2 promotes pro-inflammatory cytokines such as IL-17 and IL-21, whereas IL-2 and IL-10 secretion are negatively regulated by ROCK2 under Th17-skewing activation. Also, in disease, but not in steady state conditions, ROCK2 contributes to regulation of IFN-γ secretion in T cells from rheumatoid arthritis patients. Thus, ROCK2 signaling is a key pathway in modulation of T-cell mediated immune responses underscoring the therapeutic potential of targeted inhibition of ROCK2 in autoimmunity.  相似文献   
82.
83.
The vascular system is critical for developmental growth, tissue homeostasis and repair but also for tumor development. Bone morphogenetic protein (BMP) signaling has recently emerged as a fundamental pathway of the endothelium by regulating cardiovascular and lymphatic development and by being causative for several vascular dysfunctions. Two vascular disorders have been directly linked to impaired BMP signaling: pulmonary arterial hypertension and hereditary hemorrhagic telangiectasia. Endothelial BMP signaling critically depends on the cellular context, which includes among others vascular heterogeneity, exposure to flow, and the intertwining with other signaling cascades (Notch, WNT, Hippo and hypoxia). The purpose of this review is to highlight the most recent findings illustrating the clear need for reconsidering the role of BMPs in vascular biology.  相似文献   
84.
Chlamydia trachomatis (Ct) is a bacterial human pathogen responsible for the development of trachoma, the worldwide infection leading to blindness, and is also a major cause of sexually transmitted diseases. As iron is an essential metabolite for this bacterium, iron depletion presents a promising strategy to limit Ct proliferation. The aim of this study is to synthesize 3-isoxazolidone derivatives bearing known chelating moieties in an attempt to develop new bactericidal anti-Chlamydiaceae molecules. We have investigated the paths by which these new compounds affect Ct serovar L2 development in HeLa cells, in the presence or absence of exogenously added iron. The iron-chelating properties of these molecules were also determined. Our data reveal important bactericidal effects which are distinguishable from those due to iron chelation.  相似文献   
85.
Major knowledge gaps exist with respect to light-quality regimes in the coastal-zone Strandzha Quercus frainetto (Q.f.) forest region adjoining the southern Bulgarian Black Sea. This paper presents preliminary results that help narrow these gaps. In conjunction with leaf area index (LAI) field campaigns we undertook measurements with an array of 7 broad-band (ca 40 nm) sensors covering the range 0.40–0.94 μm, plus 1 sensor for UVB (0.297 μm peak) and 1 for photosynthetically active radiation (PAR). Measurements focused on inside-forest shade conditions at sites 0 to ca 15 km from the Black Sea and at altitudes up to ca 120 m above sea level. Some of the sites were also studied using a high-resolution spectroradiometer. A sequential measuring strategy was necessary. This involves potentially large uncertainties, here addressed through estimations of the variability around the sinusoidal course of daylight. Light-quality regimes were found to be in general support of earlier studies of deciduous forests. Our data from the broad-band sensors and from the spectroradiometer are mutually supportive. They indicate a stronger red-shift below Q.f. canopies than below canopies in enclaves dominated by Fagus orientalis and Pinus sylvestris. Transmission in the range 0.50–0.55 μm increases beneath the three types of canopies, most pronounced in the Q.f. case. Analysis of relationships between the inside-forest to open-field irradiance ratio and LAI supports the use of Beer’s Law. We found a fairly strong relationship between the red (0.66 μm) to far-red (0.73 μm) irradiance ratios (R/FR) and LAI for the Q.f. forest. In quantitative terms, the result is new for this Q.f. region, and suggests further research to explore whether a two-sensor approach (0.66 and 0.73 μm) might offer possibilities for further low-cost mapping of the spatio-temporal patterns of R/FR and LAI in Strandzha. Such mapping would assist in further studies of the region’s forest biogeochemistry and vitality.  相似文献   
86.
皮肤作为人体最大器官覆盖于全身,能阻挡有害物质的侵入,保护人体内环境稳态,参与人体代谢过程。皮肤损伤、炎症和纤维化等,都会导致皮肤屏障功能的减退,影响正常的生命活动。溶血磷脂酸(lysophosphatidic acid,LPA)是十分活跃的磷脂信号分子,参与多种生理和病理生理过程。LPA是维持体内平衡所必需的生物活性脂质介质,在皮肤中通过不同的信号通路发挥多功能磷脂信使作用。本文综述了皮肤中溶血磷脂酸受体(lysophosphatidic acid receptor,LPA1-6)及其细胞信号通路的作用及机制,综述了LPA在皮肤创面愈合、皮肤瘢痕、皮肤黑色素瘤、硬皮病、皮肤瘙痒、过敏性皮炎、皮肤屏障、皮肤疼痛,皮肤毛发生长中的作用及分子机制,有助于了解LPA在皮肤中的生理和病理生理作用。深入研究LPA的作用机制将有助于挖掘其在皮肤治疗中的作用,开发以LPA为靶点的药物。  相似文献   
87.
The temporal variation of stoichiometry between consumed oxygen and oxidized carbon was investigated for the aerobic mineralization of leachates from aquatic macrophytes. Seven species of aquatic plants, viz. Cabomba piauhyensis, Cyperus giganteus, Egeria najas, Eichhornia azurea, Salvinia auriculata, Scirpus cubensisand Utricularia breviscapa, were collected from Òleo lagoon located in the floodplain of Mogi-Guacu river (São Paulo State, Brazil). After being collected, the plants were washed, oven-dried and triturated. In order to obtain the leachate, the fragments were submitted to an aqueous extraction (cold). Mineralization chambers were incubated at 20 °C containing leachates dissolved in water samples from Òleo lagoon to a final concentration of ca. 200 mg l–1on carbon basis. The chambers were maintained under aerobic conditions; the concentrations of the organic carbon (particulate and dissolved) and the dissolved oxygen were measured during approximately 80 days. Elemental analysis of the detritus and the concentrations of the remaining material (DOC and POC) were used to determine the amounts of mineralized organic carbon. The data were analyzed with first-order kinetics models, from which the daily rates of consumption (carbon and oxygen) and the stoichiometry (O/C) were determined. In the early phase of mineralization the O/C rates increased before reaching a maximum, after which they tended to decrease. For the mineralization of leachates from C. giganteus, S. auriculata and U. breviscapa, the decrease was relatively slow. For all substrata the initial values were smaller than 1, and ranged from 0.42 (S. cubensis) to 0.81 (C. piauhyensis). The maximum values were within the range from 0.58 (U. breviscapa) to 23.1 (E. najas) and at their highest 26th (C. piauhyensis) and 106th (C. giganteus) days. These variations are believed to be associated with the chemical composition of the leachates, with their transformations and alterations of metabolic pathways involved in the mineralization.  相似文献   
88.
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen‐sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)‐mediated activation of Notch and repression of Wnt/β‐catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF‐mediated support for Notch signalling may decline while the β‐catenin‐directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation.  相似文献   
89.
The HERV‐W family of human endogenous retroviruses represents a group of numerous sequences that show close similarity in genetic composition. It has been documented that some members of HERV‐W–derived expression products are supposed to play significant role in humans' pathology, such as multiple sclerosis or schizophrenia. Other members of the family are necessary to orchestrate physiological processes (eg, ERVWE1 coding syncytin‐1 that is engaged in syncytiotrophoblast formation). Therefore, an assay that would allow the recognition of particular form of HERV‐W members is highly desirable. A peptide nucleic acid (PNA)–mediated technique for the discrimination between multiple sclerosis‐associated retrovirus and ERVWE1 sequence has been developed. The assay uses a PNA probe that, being fully complementary to the ERVWE1 but not to multiple sclerosis‐associated retrovirus (MSRV) template, shows high selective potential. Single‐stranded DNA binding protein facilitates the PNA‐mediated, sequence‐specific formation of strand invasion complex and, consequently, local DNA unwinding. The target DNA may be then excluded from further analysis in any downstream process such as single‐stranded DNA‐specific exonuclease action. Finally, the reaction conditions have been optimized, and several PNA probes that are targeted toward distinct loci along whole HERV‐W env sequences have been evaluated. We believe that PNA/single‐stranded DNA binding protein–based application has the potential to selectively discriminate particular HERV‐W molecules as they are at least suspected to play pathogenic role in a broad range of medical conditions, from psycho‐neurologic disorders (multiple sclerosis and schizophrenia) and cancers (breast cancer) to that of an auto‐immunologic background (psoriasis and lupus erythematosus).  相似文献   
90.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号