首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6679篇
  免费   385篇
  国内免费   588篇
  2024年   10篇
  2023年   117篇
  2022年   103篇
  2021年   157篇
  2020年   166篇
  2019年   208篇
  2018年   182篇
  2017年   157篇
  2016年   182篇
  2015年   194篇
  2014年   267篇
  2013年   436篇
  2012年   229篇
  2011年   283篇
  2010年   233篇
  2009年   289篇
  2008年   308篇
  2007年   290篇
  2006年   311篇
  2005年   330篇
  2004年   290篇
  2003年   272篇
  2002年   235篇
  2001年   236篇
  2000年   168篇
  1999年   171篇
  1998年   158篇
  1997年   142篇
  1996年   115篇
  1995年   118篇
  1994年   110篇
  1993年   108篇
  1992年   110篇
  1991年   87篇
  1990年   76篇
  1989年   85篇
  1988年   67篇
  1987年   64篇
  1986年   63篇
  1985年   67篇
  1984年   81篇
  1983年   62篇
  1982年   72篇
  1981年   58篇
  1980年   42篇
  1979年   46篇
  1978年   24篇
  1977年   26篇
  1976年   15篇
  1973年   15篇
排序方式: 共有7652条查询结果,搜索用时 15 毫秒
61.
Five strains of Bradyrhizobium japonicum (USDA 6, 110, 122, 138, and 143) were screened in cell culture for tolerance to acidity (pH 4.2, 4.4, and 4.6) and Al (0, 3, 4, 5, and 6 mg L–1) under low P conditions. Each strain was later grown in association with seven soybean [Glycine max. (L) Merr.] cultivars which were also screened for tolerance to the same stresses in nutrient culture to determine which soybean-Bradyrhizobium combinations would establish the most effective symbiotic N2 fixing relationships. Results indicated that strains USDA 110 and 6 were more tolerant than USDA 122, 138 and 143 with USDA 110 being the most tolerant. Acidity appeared to be the more severe stress; but even when strains showed tolerance to the stresses, cell numbers were significantly reduced. This suggests that colonization of soils and soybean roots can be adversely affected under similar conditions in the field which may result in reduced nodulation. The strains found to be more tolerant to the stresses were more effective N2 fixers in symbiosis with all soybean cultivars, with USDA 110 being definitely superior. The association between the more tolerant strains and cultivars had the largest nitrogenase activity. Further studies on the inclusion of tolerant Bradyrhizobium strains in inoculum used on tolerant soybean cultivars in the field are warranted.  相似文献   
62.
Nick P  Schafer E 《Planta》1991,185(3):415-424
Phototropic stimulation induces a spatial memory. This was inferred from experiments with maize (Zea mays L.) coleoptiles involving opposing blue-light pulses, separated by variable time intervals, and rotation on a horizontal clinostat (Nick and Schafer, 1988b, Planta 175, 380-388). In those experiments, individual seedlings either curved towards the first or towards the second pulse, or they remained straight. Bending, if it occurred, seemed to be an all-or-none response. Intermediates, i.e. plants, bending only weakly, were not observed. In the first part of the present study it was attempted to create such intermediates. For this purpose the strength of the first, inducing, and the second, opposing, pulse was varied. The result was complex: (i) Individual seedlings maintained the all-or-none expression of spatial memory. (ii) However, on the level of the whole population, the time intervals at which a given response type dominated depended on the fluence ratio. (iii) Furthermore, the final curvature was determined by the fluence ratio. These results are discussed in terms of a blue-light-induced transverse polarity. This polarity initiates from a labile precursor, which can be reoriented by an opposing stimulation (indicated by the strong bending towards the second pulse). The strong curvatures towards the first pulse over long time intervals reveal that, eventually, the blue-light-induced transverse polarity becomes stabilised and thus immune to the counterpulse. In the second part of the study, the relation between phototropic transduction and transverse polarity was characterised by a phenomenological approach involving the following points: (i) Sensory adaptation for induction of transverse polarity disappears with a time course similar to that for phototropic sensory adaptatation. (ii) The fluence response for induction of transverse polarity is a saturation curve and not bell-shaped like the curve for phototropism (iii) For strong counterpulses and long time intervals the clinostat-elicited nastic response (Nick and Schafer 1989, Planta 179, 123-131) becomes manifest and causes an "aiming error" towards the caryopsis. (iv) Temperature-sensitivity of polarity induction was high in the first 20 min after induction, then dropped sharply and rose again with the approach of polarity fixation. (v) Stimulus-summation experiments indicated that, for different inducing fluences, the actual fixation of polarity happened at about 2 h after induction. These experiments point towards an early separation of the transduction chains mediating phototropism and transverse polarity, possibly before phototrophic asymmetry is formed.  相似文献   
63.
64.
Summary The results of a study aimed at the identification of treatment optima for triploidy induction in recently fertilised Oreochromis niloticus L. eggs by altering the intensity, duration and timing of application of pressure, heat and cold shocks are reported. Preliminary, but not directly comparable, trials suggested the following treatments to be close to the individual agent optima. Pressure: 8,000 psi 2-min duration applied 9 min after fertilisation (a.f.); heat: 41 °C, 3.5-min duration applied 5 min a.f., cold: 9°C, 30-min duration applied 7 min a.f. In a directly comparable trial in which the eggs of eight different females were separately exposed to the optimum shocks listed above, individual triploid yields were more variable following cold shocks and mean triploid yields were, therefore, higher following pressure and heat shock. These and other results obtained are presented and the light they shed on the timing of the second meiotic division in this species is discussed.  相似文献   
65.
Apical flower buds of Cymbidium goeringli Reichenbach fil. (ca 2 mm long) exeised from infloreseences (ca 5 cm long) were explanted on modified Murashige & Skoog medium (=MS medium) supplemented with N6-benzyladenine (BA) and -naphthaleneacetic acid (NAA). Within 107 days of culture, swelling growth, chlorophyll synthesis, and subsequent rhizome differentiation were observed. MS medium containing 0.1 mg l-1 BA and 10 mg l-1 NAA was found to be optimal for initiating rhizome development and subsequent plantlet regeneration.Explants cultured on MS medium supplemented with 1 mg l-1 NAA alone formed a mass of rhizome branches. Multiple shoots of rhizome branches were induced from apical segments when rhizomes were transferred to MS medium containing 0.1 mg l-1 BA and 10 mg l-1 NAA.Abbreviations NAA -naphthaleneacetic acid - BA N6-benzyladenine  相似文献   
66.
Summary Mesoderm formation is a result of cell-cell interactions between the vegetal and animal hemisphere and is thought to be mediated by inducing peptide growth factors including members of the FGF and TGF superfamilies. Our immunochemical study analyses the distribution of FGF receptors coded by the human flg gene during embryogenesis of Xenopus laevis. Immunostaining was detected in the dorsal and ventral ectoderm and also in the marginal zone of early cleavage, blastula and gastrula stages. Signals were very strong in the mid and late blastula (stage 8 and 9) and declined slightly in the early gastrula (stage 10). A dramatic decrease was observed up to the late gastrula (stage 11+). In stage 13 embryos, immunostaining was only found in cells around the blastopore. Isolated ectoderm cultured in vitro showed a similar temporal expression and decrease of the signal as the normal embryos. These results indicate that receptor expression is independent of the interaction of the animal cells with the vegetal part of the embryo. Of interest is the fact that the signal cannot only be found at or near the cell surface but also within the cell. This suggests the presence of an intracellular isoform of the receptor resulting from the endogenous expression of splice variants and the internalization of transmembrane receptor. Taken together our results suggest that the loss of competence (for bFGF around stage 10) is not directly correlated with the presence of receptors. The possible roles of heparan sulphate glucosaminoglycans (low affinity receptors) and control mechanisms in the intracellular signalling pathway downstream of the receptor level should be taken into consideration.  相似文献   
67.
中药山豆根的研究进展   总被引:3,自引:1,他引:2  
本文对中药山豆根进行了本草考证,并概括总结了半个世纪以来国内外对山豆根(广豆根)和北豆根在生药学研究、化学成分、药理作用与临床应用等方面的研究成果,为山豆根的进一步研究提供参考。全文附参考文献105篇。  相似文献   
68.
Arginyl residues in the NADPH-binding sites of phenol hydroxylase   总被引:1,自引:0,他引:1  
Phenol hydroxylase was inactivated by the arginine reagents 2,3-butanedione, 1,2-cyclohexanedione, and phenylglyoxal. The cosubstrate NADPH, as well as NADP+ and several analogues thereof, protected the enzyme against inactivation. Phenol did not protect the activity against any of the reagents used, nor did modification by 2,3-butanedione affect the binding of phenol. We propose the presence of arginyl residues in the binding sites for the adenosine phosphate part of NADPH.  相似文献   
69.
神经节苷脂对6-OHDA损毁交感神经末梢的对抗作用   总被引:1,自引:0,他引:1  
单次6-OHDA (15mg/kg.i.p.)注射后24h,可使雌性成年小鼠颌下腺内儿茶酚胺荧光神经末梢几乎完全消失;同时用 HPLC 测得腺体内去甲肾上腺素(NA)和多巴胺(DA)的含量下降至正常值的3—4%以下。随着受损交感神经末梢再生过程,NA 和 DA 水平有缓慢的恢复。在损毁2周时 NA 和 DA 含量分别达到正常水平的50%和28%,且在4周时完全恢复。在注射6-OHDA 的同时,和在损伤后12h 内给动物注射4次神经节苷脂(每次50mg/kg.i.p.)并在其后的一周內每天注射一次,可使颌下腺内 NA 含量维持在正常水平;在损毁后4h 及损毁前4d 开始施用神经节苷脂,也可不同程度地对抗交感神经末梢损伤,但作用强度不如前者。实验结果提示:(1)神经节苷脂通过减弱6-OHDA 及其代谢产物的损伤效应能够保护交感神经末梢膜,它可能还有促损伤末梢再生性长芽的作用;(2)损伤后神经节苷脂处理得越早,其效果越好。  相似文献   
70.
On the origin of neoblasts in freshwater planarians (Turbellaria)   总被引:2,自引:2,他引:0  
Experiments on 1) regeneration of the cave-adapted planarian, Sphalloplana zeschi, 2) induction of sexuality in an asexual strain of Dugesia japonica japonica by feeding, and 3) culture of dissociated planarian cells, show that neoblasts originate from intestinal cells, i.e. phagocytic cells and granular clubs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号