首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1239篇
  免费   32篇
  国内免费   18篇
  2023年   11篇
  2021年   14篇
  2020年   15篇
  2019年   13篇
  2018年   7篇
  2017年   9篇
  2016年   11篇
  2015年   22篇
  2014年   42篇
  2013年   45篇
  2012年   34篇
  2011年   49篇
  2010年   48篇
  2009年   44篇
  2008年   51篇
  2007年   88篇
  2006年   65篇
  2005年   48篇
  2004年   48篇
  2003年   56篇
  2002年   45篇
  2001年   59篇
  2000年   56篇
  1999年   38篇
  1998年   53篇
  1997年   43篇
  1996年   49篇
  1995年   37篇
  1994年   21篇
  1993年   21篇
  1992年   24篇
  1991年   15篇
  1990年   13篇
  1989年   11篇
  1988年   15篇
  1986年   9篇
  1985年   3篇
  1984年   9篇
  1983年   2篇
  1982年   6篇
  1981年   4篇
  1980年   7篇
  1979年   5篇
  1978年   4篇
  1977年   5篇
  1976年   3篇
  1974年   3篇
  1973年   2篇
  1972年   2篇
  1971年   2篇
排序方式: 共有1289条查询结果,搜索用时 15 毫秒
71.
Anuran (frog) tadpoles and urodeles (newts and salamanders) are the only vertebrates capable of fully regenerating amputated limbs. During the early stages of regeneration these amphibians form a "blastema", a group of mesenchymal progenitor cells that specifically directs the regrowth of the limb. We report that wnt-3a is expressed in the apical epithelium of regenerating Xenopus laevis limb buds, at the appropriate time and place to play a role during blastema formation. To test whether Wnt/beta-catenin signaling is required for limb regeneration, we created transgenic X. laevis tadpoles that express Dickkopf-1 (Dkk1), a specific inhibitor of Wnt/beta-catenin signaling, under the control of a heat-shock promoter. Heat-shock immediately before limb amputation or during early blastema formation blocked limb regeneration but did not affect the development of contralateral, un-amputated limb buds. When the transgenic tadpoles were heat-shocked following the formation of a blastema, however, they retained the ability to regenerate partial hindlimb structures. Furthermore, heat-shock induced Dkk1 blocked fgf-8 but not fgf-10 expression in the blastema. We conclude that Wnt/beta-catenin signaling has an essential role during the early stages of limb regeneration, but is not absolutely required after blastema formation.  相似文献   
72.
73.
In mammalian cells, E-type cyclins (E1 and E2) are generally believed to be required for entry into S phase. However, in mice, cyclin E is largely dispensable for normal embryogenesis. Moreover, Drosophila cyclin E plays a critical role in cell fate determination in neural lineages independently of proliferation. Thus, the functions of cyclin E, particularly during early development, remain elusive. Here, we investigated the requirement for E-type cyclins during Xenopus embryogenesis. Although cyclin E1 has been reported as a maternal cyclin, inhibition of its translation in the embryo caused no serious defects. We isolated a Xenopus homologue of human cyclin E2, which was zygotically expressed. Sufficient inhibition of its expression led to death at late gastrula, while partial inhibition allowed survival. These observations indicate distinct roles for Xenopus cyclins E1 and E2, and an absolute requirement of cyclin E2 for Xenopus embryogenesis.  相似文献   
74.
Transport mechanisms involved in pH homeostasis are relevant for the survival of Leishmania parasites. The presence of chloride conductive pathways in Leishmania has been anticipated since anion channel inhibitors limit the proton extrusion mediated by the H+ATPase, which is the major regulator of intracellular pH in amastigotes. In this study, we used Xenopus laevis oocytes as a heterologous expression system in which to study the expression of ion channels upon microinjection of polyA mRNA from Leishmania amazonensis. After injection of polyA mRNA into the oocytes, we measured three different types of currents. We discuss the possible origin of each, and propose that Type 3 currents could be the result of the heterologous expression of proteins from Leishmania since they show different pharmacological and biophysical properties as compared to endogenous oocyte currents.  相似文献   
75.
Xenopus egg extracts provide a powerful tool for studying the formation and function of chromosomes. Two alternative protocols are generally used to obtain mitotic chromosomes. The first one uses a direct chromatin assembly from sperm nuclei in cytostatic factor (CSF)-arrested meiotic extracts, while the second is based on transition of sperm DNA through a replication step with subsequent reestablishment of CSF arrest. In this study we show that general kinetochore structure is disrupted in chromosomes assembled directly in CSF egg extracts: The amounts of outer kinetochore proteins such as Bub1, BubR1, and Dynactin subunit p150glued are reduced and the components of the inner centromeric region (Aurora B kinase and Survivin) show compromised recruitment to centromeres. On the contrary, kinetochores on chromosomes assembled according to the second protocol closely resemble those in somatic cells. Our results indicate that the transition of sperm nuclei through interphase is an essential step for proper kinetochore assembly.  相似文献   
76.
77.
DNA replication in higher eukaryotic cells occurs at a large number of discrete sites called replication foci. We have previously purified a protein, focus-forming activity 1 (FFA-1), which is involved in the assembly of putative prereplication foci in Xenopus egg extracts. FFA-1 is the orthologue of the Werner syndrome gene product (WRN), a member of the RecQ helicase family. In this paper we show that FFA-1 colocalizes with sites of DNA synthesis and the single-stranded DNA binding protein, replication protein A (RPA), in nuclei reconstituted in the egg extract. In addition, we show that two glutathione S-transferase FFA-1 fusion proteins can inhibit DNA replication in a dominant negative manner. The dominant negative effect correlates with the incorporation of the fusion proteins into replication foci to form "hybrid foci," which are unable to engage in DNA replication. At the biochemical level, RPA can interact with FFA-1 and specifically stimulates its DNA helicase activity. However, in the presence of the dominant negative mutant proteins, the stimulation is prevented. These results provide the first direct biochemical evidence of an important role for FFA-1 in DNA replication.  相似文献   
78.
Xoom has been identified as a novel gene that plays an important role in gastrulation of Xenopus laevis embryo. Although Xoom is actively transcribed during oogenesis, distribution and function of its translation product have not yet been clarified. In the present study, the polyclonal antibody raised against Xoom was generated to investigate a behavior of Xoom protein. Anti-Xoom antibodies revealed that there are two forms of Xoom protein in Xenopus embryos: (i) a 45 kDa soluble cytoplasmic form; and (ii) a 44 kDa membrane-associated form. Two forms of Xoom protein were ubiquitously detected from unfertilized egg to tadpole stage, with a qualitative peak during blastula and gastrula stages. Immunohistochemical examination showed that Xoom protein is maternally stored in the animal subcortical layer and divided into presumptive ectodermal cells during cleavage stages. Enzymatic digestion of membrane protein and immunologic detection of Xoom showed that Xoom exists as a membrane-associated protein. To examine a function of Xoom protein, anti-Xoom antibodies were injected into blastocoele of stage 7 blastula embryo. Anti-Xoom antibodies caused gastrulation defect in a dose- dependent manner. These results suggest that maternally prepared Xoom protein is involved in gastrulation movement on ectodermal cells.  相似文献   
79.
Fertilization is accompanied by a rapid and transient calcium release in eggs, which is required for the onset of zygotic developmental program or 'egg activation'. Recently, it was found that Src family tyrosine kinase (SFK)-dependent phospholipase C (PLC) activity is necessary for the calcium transience in fertilized Xenopus eggs. The present study demonstrates that hydrogen peroxide (H2O2) stimulates protein-tyrosine phosphorylation in Xenopus eggs, which occurs primarily in the egg cortex of the animal hemisphere as revealed by indirect immunofluorescence study. Egg SFK was found to be upregulated by H2O2 while the SFK-specific inhibitor PP1 effectively blocked H2O2-induced tyrosine phosphorylation. As in fertilized eggs, PLCgamma, but not Shc, was tyrosine-phosphorylated in H2O2-treated eggs. H2O2 also caused inositol 1,4,5-trisphosphate (IP3) production and sustained calcium release. After limited application of H2O2, elevated SFK activity and tyrosine phosphorylation were quickly reversed. Under such conditions, eggs showed cortical contraction and dephosphorylation of p42 MAP kinase, both of which are indicative of egg activation. These egg activation events, as well as H2O2-induced IP3 production and calcium release, were sensitive to PP1 and PLC inhibitor U-73122. Together, the present study demonstrated that H2O2 can mimic, at least in part, early events of Xenopus egg activation that require an SFK-dependent PLC pathway.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号