首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   154篇
  免费   20篇
  国内免费   2篇
  2023年   7篇
  2022年   4篇
  2021年   6篇
  2020年   12篇
  2019年   14篇
  2018年   19篇
  2017年   9篇
  2016年   3篇
  2015年   11篇
  2014年   11篇
  2013年   15篇
  2012年   16篇
  2011年   13篇
  2010年   10篇
  2009年   4篇
  2008年   5篇
  2007年   3篇
  2006年   5篇
  2004年   3篇
  2003年   3篇
  2000年   2篇
  1997年   1篇
排序方式: 共有176条查询结果,搜索用时 46 毫秒
141.
Liu Y  Yu X  Wang L  Li C  Archacki S  Huang C  Liu JY  Wang Q  Liu M  Tang Z 《Gene》2012,491(2):246-250
X-linked recessive hypohidrotic ectodermal dysplasia (XLHED) is characterized by the defective morphogenesis of teeth, hair, and eccrine sweat glands. It is associated with mutations in the EDA gene. Up to now, more than 100 mutations in the EDA gene have been reported to cause XLHED. The product of EDA gene is a trimeric type II transmembrane protein that belongs to the tumor necrosis factor (TNF) family of ligands. In this study, we identified a Chinese family with XLHED. Direct DNA sequencing of the whole coding region of EDA revealed a novel missense mutation, p.Leu354Pro in a patient affected with XLHED. This mutation was not found in either unaffected male individuals of the family or 168 normal controls. The substitution of Leu354 with Pro was found to be located in the TNF-like domain of EDA and may influence the epithelial signaling pathway required for the normal ectodermal development through altering the topology of EDA. Our finding broadens the spectrum of EDA mutations and may help to understand the molecular basis of XLHED and aid genetic counseling.  相似文献   
142.
It is well established that crosstalk between cancer‐associated fibroblasts (CAFs) and cancer cells plays a critical role in the occurrence and development of oral squamous cell carcinoma (OSCC). The molecular mechanisms underlying such interaction, however, remain far from clear. Accumulating data have indicated that microRNAs involved in tumor microenvironment, particularly in CAFs, contribute to the activation of fibroblasts and metastasis of cancer cells. Here, we showed that miR‐148a was downregulated in CAFs compared with normal fibroblasts isolated from clinical OSCC tissue. Investigation of miR‐148a function in fibroblasts demonstrated that overexpression of miR‐148a in CAFs significantly impaired the migration and invasion of oral carcinoma cells (SCC‐25) by directly targeting WNT10B. Taken together, these data suggested that miR‐148a might be a novel candidate target for the treatment of OSCC.  相似文献   
143.
The WNT signaling pathway has an essential role in colorectal carcinogenesis and progression, which involves a cascade of genetic and epigenetic changes. We aimed to analyze DNA methylation affecting the WNT pathway genes in colorectal carcinogenesis in promoter and gene body regions using whole methylome analysis in 9 colorectal cancer, 15 adenoma, and 6 normal tumor adjacent tissue (NAT) samples by methyl capture sequencing. Functional methylation was confirmed on 5-aza-2′-deoxycytidine-treated colorectal cancer cell line datasets. In parallel with the DNA methylation analysis, mutations of WNT pathway genes (APC, β-catenin/CTNNB1) were analyzed by 454 sequencing on GS Junior platform. Most differentially methylated CpG sites were localized in gene body regions (95% of WNT pathway genes). In the promoter regions, 33 of the 160 analyzed WNT pathway genes were differentially methylated in colorectal cancer vs. normal, including hypermethylated AXIN2, CHP1, PRICKLE1, SFRP1, SFRP2, SOX17, and hypomethylated CACYBP, CTNNB1, MYC; 44 genes in adenoma vs. NAT; and 41 genes in colorectal cancer vs. adenoma comparisons. Hypermethylation of AXIN2, DKK1, VANGL1, and WNT5A gene promoters was higher, while those of SOX17, PRICKLE1, DAAM2, and MYC was lower in colon carcinoma compared to adenoma. Inverse correlation between expression and methylation was confirmed in 23 genes, including APC, CHP1, PRICKLE1, PSEN1, and SFRP1. Differential methylation affected both canonical and noncanonical WNT pathway genes in colorectal normal-adenoma-carcinoma sequence. Aberrant DNA methylation appears already in adenomas as an early event of colorectal carcinogenesis.  相似文献   
144.
145.
The major cell signaling pathways, and their specific mechanisms of transduction, have been a subject of investigation for many years. As our understanding of these pathways advances, we find that they are evolutionarily well-conserved not only individually, but also at the level of their crosstalk and signal integration. Productive interactions within the key signal transduction networks determine success in embryonic organogenesis, and postnatal tissue repair throughout adulthood. However, aside from clues revealed through examining age-related degenerative diseases, much remains uncertain about imbalances within these pathways during normal aging. Further, little is known about the molecular mechanisms by which alterations in the major cell signal transduction networks cause age-related pathologies. The aim of this review is to describe the complex interplay between the Notch, TGFβ, WNT, RTK-Ras and Hh signaling pathways, with a specific focus on the changes introduced within these networks by the aging process, and those typical of age-associated human pathologies.  相似文献   
146.
The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown.We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin.These data suggest sFRP4 promotes epidermal differentiation.  相似文献   
147.
Mammalian WNT genes encode secreted glycoproteins that are conserved homologues of the Drosophila Wingless gene, which plays a crucial role in Drosophila development. Recently, WNT pathway signaling has been implicated in ovarian development, oogenesis, and early development. We sought to evaluate whether these genes may contribute to the formation of healthy human oocytes or embryos, and whether the expression of these genes could provide informative markers of human oocyte and embryo quality. To do this, we employed the primate embryo gene expression resource (PREGER; www.preger.org) to examine expression of mRNAs encoding 38 components of the WNT signaling pathway in rhesus monkey oocytes and embryos as a nonhuman primate model. We observed considerable conservation between rhesus monkey and mouse of expression of WNT, FZD, and effector gene mRNAs, and a generalized downregulation of genes encoding key components of the WNT signaling pathway during preimplantation development. Our results support a role for WNT signaling during oocyte growth or maturation, but not during preimplantation development. Additionally, we observed differences between in vitro cultured and in vivo developing blastocysts, indicating possible effects of culture on WNT signaling during the peri-implantation period.  相似文献   
148.
Pattern formation and growth must be tightly coupled during embryonic development. In vertebrates, however, little is known of the molecules that serve to link these two processes. Here we show that bone morphogenetic proteins (BMP) coordinate the acquisition of pattern information and the stimulation of proliferation in the embryonic spinal neural tube. We have blocked BMP and transforming growth factor-β superfamily (TGFβ) function in the chick embryo using Noggin, a BMP antagonist, and siRNA against Smad4. We show that BMPs/TGFβs are necessary to regulate pattern formation and the specification of neural progenitor populations in the dorsal neural tube. BMPs also serve to establish discrete expression domains of Wnt ligands, receptors, and antagonists along the dorsal-ventral axis of the neural tube. Using the extracellular domain of Frizzled 8 to block Wnt signaling and Wnt3a ligand misexpression to activate WNT signaling, we demonstrate that the Wnt pathway acts mitogenically to expand the populations of neuronal progenitor cells specified by BMP. Thus, BMPs, acting through WNTs, couple patterning and growth to generate dorsal neuronal fates in the appropriate proportions within the neural tube.  相似文献   
149.
We report the silencing of CA1 mRNA in PC3 and MDA cells. The levels of mRNA coding CA1 protein in the knock‐down mRNA (CA1 siRNA) cells have been measured by RT‐PCR and were approximately 5% (PC3) and 20% (MDA‐MB‐231), respectively, of the level of control (Mock siRNA) used during silencing. In PC3 and MDA‐MB‐231 cells, the mRNAs for COL1A1 and COL4A4 were up‐regulated. The mRNAs for CTHRC1, LAMC2, and WNT7B were not changed when compared to the control. The morphology of the cells during the treatments remained the same. On the Western blots, the lysate from the silenced cells showed lower levels of CA I as well.  相似文献   
150.
A hallmark of cancer is reactivation/alteration of pathways that control cellular differentiation during developmental processes. Evidence indicates that WNT, Notch, BMP and Hedgehog pathways have a role in normal epithelial cell differentiation, and that alterations in these pathways accompany establishment of the tumorigenic state. Interestingly, there is recent evidence that these pathways are intertwined at the molecular level, and these nodes of intersection may provide opportunities for effective targeted therapies. This review will highlight the role of the WNT, Notch, BMP and Hedgehog pathways in colon cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号