首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   51957篇
  免费   4315篇
  国内免费   1681篇
  2023年   702篇
  2022年   754篇
  2021年   1367篇
  2020年   1734篇
  2019年   2254篇
  2018年   2061篇
  2017年   1484篇
  2016年   1445篇
  2015年   1642篇
  2014年   3083篇
  2013年   3762篇
  2012年   2349篇
  2011年   3041篇
  2010年   2277篇
  2009年   2578篇
  2008年   2790篇
  2007年   2678篇
  2006年   2276篇
  2005年   2132篇
  2004年   1895篇
  2003年   1617篇
  2002年   1409篇
  2001年   994篇
  2000年   779篇
  1999年   841篇
  1998年   772篇
  1997年   676篇
  1996年   634篇
  1995年   612篇
  1994年   590篇
  1993年   490篇
  1992年   447篇
  1991年   400篇
  1990年   313篇
  1989年   286篇
  1988年   241篇
  1987年   248篇
  1986年   207篇
  1985年   355篇
  1984年   496篇
  1983年   423篇
  1982年   449篇
  1981年   365篇
  1980年   368篇
  1979年   293篇
  1978年   227篇
  1977年   221篇
  1976年   218篇
  1975年   181篇
  1974年   170篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Human Tamm-Horsfall urinary glycoprotein from an individual of the blood group Sd(a+) phenotype was tritium-labelled by treatment with galactose oxidase and sodium boro[3H]hydride and was then digested with endo-beta-galactosidase. A series of dialysable, labelled fragments was released from which a pentasaccharide was isolated that strongly inhibited the agglutination of Sd(a+) red cells by human anti-Sda serum and hence contained the Sda determinant structure. Reduction, methylation analysis and sequential exo-glycosidase digestion established the structure of the pentasaccharide as: GalNAc beta(1 leads to 4)[NeuAc(2 leads to 3)]Gal beta(1 leads to 4)GlcNAc beta(1 leads to 3)Gal  相似文献   
32.
A tip-focused Ca^2+ gradient is tightly coupled to polarized pollen tube growth, and tip-localized influxes of extracellular Ca^2+ are required for this process. However the molecular identity and regulation of the potential Ca^2+ channels remains elusive. The present study has implicated CNGC18 (cyclic nucleotide-gated channel 18) in polarized pollen tube growth, because its overexpression induced wider and shorter pollen tubes. Moreover, CNGC18 overexpression induced depolarization of pollen tube growth was suppressed by lower extracellular calcium ([Ca^2+]ex). CNGC18-yellow fluorescence protein (YFP) was preferentially localized to the apparent post-Golgi vesicles and the plasma membrane (PM) in the apex of pollen tubes. The PM localization was affected by tip-localized ROP1 signaling. Expression of wild type ROP1 or an active form of ROP1 enhanced CNGC18-YFP localization to the apical region of the PM, whereas expression of RopGAP1 (a ROP1 deactivator) blocked the PM localization. These results support a role for PM-Iocalized CNGC18 in the regulation of polarized pollen tube growth through its potential function in the modulation of calcium influxes.  相似文献   
33.
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent 15N and 13C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide 1H nuclei, and quantitative measurements of site-specific 15N–15N dipole–dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD–CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD–CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD–CTD dimerization interfaces are less significant.  相似文献   
34.
Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. Pathogenesis associated with enterohemorrhagic E. coli involves direct delivery of virulence factors from the bacteria into epithelial cell cytosol via a syringe-like organelle known as the type III secretion system. The type III secretion system protein EspD is a critical factor required for formation of a translocation pore on the host cell membrane. Here, we show that recombinant EspD spontaneously integrates into large unilamellar vesicle (LUV) lipid bilayers; however, pore formation required incorporation of anionic phospholipids such as phosphatidylserine and an acidic pH. Leakage assays performed with fluorescent dextrans confirmed that EspD formed a structure with an inner diameter of ∼2.5 nm. Protease mapping indicated that the two transmembrane helical hairpin of EspD penetrated the lipid layer positioning the N- and C-terminal domains on the extralumenal surface of LUVs. Finally, a combination of glutaraldehyde cross-linking and rate zonal centrifugation suggested that EspD in LUV membranes forms an ∼280–320-kDa oligomeric structure consisting of ∼6–7 subunits.  相似文献   
35.
Previous studies have indicated that most trypsin inhibitor-like cysteine-rich domain (TIL)-type protease inhibitors, which contain a single TIL domain with ten conserved cysteines, inhibit cathepsin, trypsin, chymotrypsin, or elastase. Our recent findings suggest that Cys2nd and Cys6th were lost from the TIL domain of the fungal-resistance factors in Bombyx mori, BmSPI38 and BmSPI39, which inhibit microbial proteases and the germination of Beauveria bassiana conidia. To reveal the significance of these two missing cysteines in relation to the structure and function of TIL-type protease inhibitors in B. mori, cysteines were introduced at these two positions (D36 and L56 in BmSPI38, D38 and L58 in BmSPI39) by site-directed mutagenesis. The homology structure model of TIL domain of the wild-type and mutated form of BmSPI39 showed that two cysteine mutations may cause incorrect disulfide bond formation of B. mori TIL-type protease inhibitors. The results of Far-UV circular dichroism (CD) spectra indicated that both the wild-type and mutated form of BmSPI39 harbored predominantly random coil structures, and had slightly different secondary structure compositions. SDS-PAGE and Western blotting analysis showed that cysteine mutations affected the multimerization states and electrophoretic mobility of BmSPI38 and BmSPI39. Activity staining and protease inhibition assays showed that the introduction of cysteine mutations dramaticly reduced the activity of inhibitors against microbial proteases, such as subtilisin A from Bacillus licheniformis, protease K from Engyodontium album, protease from Aspergillus melleus. We also systematically analyzed the key residue sites, which may greatly influence the specificity and potency of TIL-type protease inhibitors. We found that the two missing cysteines in B. mori TIL-type protease inhibitors might be crucial for their inhibitory activities against microbial proteases. The genetic engineering of TIL-type protease inhibitors may be applied in both health care and agricultural industries, and could lead to new methods for breeding fungus-resistant transgenic crops and antifungal transgenic silkworm strains.  相似文献   
36.
《Cytokine》2015,73(2):224-225
Balanced regulation of cytokine secretion in T cells is critical for maintenance of immune homeostasis and prevention of autoimmunity. The Rho-associated kinase (ROCK) 2 signaling pathway was previously shown to be involved in controlling of cellular movement and shape. However, recent work from our group and others has demonstrated a new and important role of ROCK2 in regulating cytokine secretion in T cells. We found that ROCK2 promotes pro-inflammatory cytokines such as IL-17 and IL-21, whereas IL-2 and IL-10 secretion are negatively regulated by ROCK2 under Th17-skewing activation. Also, in disease, but not in steady state conditions, ROCK2 contributes to regulation of IFN-γ secretion in T cells from rheumatoid arthritis patients. Thus, ROCK2 signaling is a key pathway in modulation of T-cell mediated immune responses underscoring the therapeutic potential of targeted inhibition of ROCK2 in autoimmunity.  相似文献   
37.
Chlamydia trachomatis (Ct) is a bacterial human pathogen responsible for the development of trachoma, the worldwide infection leading to blindness, and is also a major cause of sexually transmitted diseases. As iron is an essential metabolite for this bacterium, iron depletion presents a promising strategy to limit Ct proliferation. The aim of this study is to synthesize 3-isoxazolidone derivatives bearing known chelating moieties in an attempt to develop new bactericidal anti-Chlamydiaceae molecules. We have investigated the paths by which these new compounds affect Ct serovar L2 development in HeLa cells, in the presence or absence of exogenously added iron. The iron-chelating properties of these molecules were also determined. Our data reveal important bactericidal effects which are distinguishable from those due to iron chelation.  相似文献   
38.
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen‐sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)‐mediated activation of Notch and repression of Wnt/β‐catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF‐mediated support for Notch signalling may decline while the β‐catenin‐directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation.  相似文献   
39.
40.
The role of invariant water molecules in the activity of plant cysteine protease is ubiquitous in nature. On analysing the 11 different Protein DataBank (PDB) structures of plant thiol proteases, the two invariant water molecules W1 and W2 (W220 and W222 in the template 1PPN structure) were observed to form H-bonds with the Ob atom of Asn 175. Extensive energy minimization and molecular dynamics simulation studies up to 2 ns on all the PDB and solvated structures clearly revealed the involvement of the H-bonding association of the two water molecules in fixing the orientation of the asparagine residue of the catalytic triad. From this study, it is suggested that H-bonding of the water molecule at the W1 invariant site better stabilizes the Asn residue at the active site of the catalytic triad.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号