首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   88058篇
  免费   4302篇
  国内免费   3069篇
  2023年   963篇
  2022年   1257篇
  2021年   3111篇
  2020年   1837篇
  2019年   2115篇
  2018年   1836篇
  2017年   1491篇
  2016年   2118篇
  2015年   4085篇
  2014年   7501篇
  2013年   6882篇
  2012年   5627篇
  2011年   6177篇
  2010年   4600篇
  2009年   4277篇
  2008年   4459篇
  2007年   4804篇
  2006年   3263篇
  2005年   2918篇
  2004年   2083篇
  2003年   1859篇
  2002年   1622篇
  2001年   1274篇
  2000年   1185篇
  1999年   1135篇
  1998年   970篇
  1997年   828篇
  1996年   829篇
  1995年   912篇
  1994年   807篇
  1993年   861篇
  1992年   737篇
  1991年   730篇
  1990年   653篇
  1989年   633篇
  1988年   616篇
  1987年   521篇
  1986年   445篇
  1985年   679篇
  1984年   1025篇
  1983年   648篇
  1982年   840篇
  1981年   830篇
  1980年   596篇
  1979年   581篇
  1978年   373篇
  1977年   384篇
  1976年   339篇
  1974年   235篇
  1973年   235篇
排序方式: 共有10000条查询结果,搜索用时 46 毫秒
81.
This opinion piece offers a commentary on the four papers that address the theme of the development of self and other understanding with a view to highlighting the important contribution of developmental research to understanding of mechanisms of social cognition. We discuss potential mechanisms linking self–other distinction and empathy, implications for grouping motor, affective and cognitive domains under a single mechanism, applications of these accounts for joint action and finally consider self–other distinction in group versus dyadic settings.  相似文献   
82.
Salmonella enterica serovar Enteritidis (SE) is a foodborne pathogen that can threaten human health through contaminated poultry products. Live poultry, chicken eggs and meat are primary sources of human salmonellosis. To understand the genetic resistance of egg‐type chickens in response to SE inoculation, global gene expression in the spleen of 20‐week‐old White Leghorn was measured using the Agilent 4 × 44 K chicken microarray at 7 and 14 days following SE inoculation (dpi). Results showed that there were 1363 genes significantly differentially expressed between inoculated and non‐inoculated groups at 7 dpi (I7/N7), of which 682 were up‐regulated and 681 were down‐regulated genes. By contrast, 688 differentially expressed genes were observed at 14 dpi (I14/N14), of which 371 were up‐regulated genes and 317 were down‐regulated genes. There were 33 and 28 immune‐related genes significantly differentially expressed in the comparisons of I7/N7 and I14/N14 respectively. Functional annotation revealed that several Gene Ontology (GO) terms related to immunity were significantly enriched between the inoculated and non‐inoculated groups at 14 dpi but not at 7 dpi, despite a similar number of immune‐related genes identified between I7/N7 and I14/N14. The immune response to SE inoculation changes with different time points following SE inoculation. The complicated interaction between the immune system and metabolism contributes to the immune responses to SE inoculation of egg‐type chickens at 14 dpi at the onset of lay. GC, TNFSF8, CD86, CD274, BLB1 and BLB2 play important roles in response to SE inoculation. The results from this study will deepen the current understanding of the genetic response of the egg‐type chicken to SE inoculation at the onset of egg laying.  相似文献   
83.
84.
85.
Neuropeptide Y (NPY) is an evolutionarily conserved neurosecretory molecule implicated in a diverse complement of functions across taxa and in regulating feeding behavior and reproductive maturation in Octopus. However, little is known about the precise molecular circuitry of NPY-mediated behaviors and physiological processes, which likely involve a complex interaction of multiple signal molecules in specific brain regions. Here, we examined the expression of NPY throughout the Octopus central nervous system. The sequence analysis of Octopus NPY precursor confirmed the presence of both, signal peptide and putative active peptides, which are highly conserved across bilaterians. In situ hybridization revealed distinct expression of NPY in specialized compartments, including potential “integration centers,” where visual, tactile, and other behavioral circuitries converge. These centers integrating separate circuits may maintain and modulate learning and memory or other behaviors not yet attributed to NPY-dependent modulation in Octopus. Extrasomatic localization of NPY mRNA in the neurites of specific neuron populations in the brain suggests a potential demand for immediate translation at synapses and a crucial temporal role for NPY in these cell populations. We also documented the presence of NPY mRNA in a small cell population in the olfactory lobe, which is a component of the Octopus feeding and reproductive control centers. However, the molecular mapping of NPY expression only partially overlapped with that produced by immunohistochemistry in previous studies. Our study provides a precise molecular map of NPY mRNA expression that can be used to design and test future hypotheses about molecular signaling in various Octopus behaviors.  相似文献   
86.
About 80% of the evolutionary history of life on Earth is restricted to microorganisms which have had several billion years to speciate. The reasons for the origin (self-assembly) of life on Earth, bacterial cell division and why there are so many different bacteria and their global dispersal are discussed from an evolutionary perspective.  相似文献   
87.
This research tested the utility of two classes of skin secretion compounds to the phylogeny of the Bufo crucifer group. Skin secretions from specimens of nine populations of B. crucifer group were obtained and submitted to qualitative analysis. We observed a clear difference in the composition of the skin secretion molecules obtained from the species of Bufo studied. Fifty-nine molecules, 16 indolealkylamines and 43 proteins, were used as characters, and 39 of these were parsimonious informative. The tree topology of the skin secretion combined data showed areas of congruence and conflict when compared to an mtDNA phylogeny of the B. crucifer group. We used the Templeton test to evaluate the heterogeneity between the skin secretion and mtDNA data. Although not recommended, we performed a combined analysis with the two partitions. The skin secretion characters from the species of Bufo studied have phylogenetic signal. These data are indicative, at least as a preliminary study, of the phylogenetic relationships among the B. crucifer group taxa.  相似文献   
88.
The primitive land plant life cycle featured the production of spores of unimodal size, a condition called homospory. The evolution of bimodal size distributions with small male spores and large female spores, known as heterospory, was an innovation that occurred repeatedly in the history of land plants. The importance of desiccation‐resistant spores for colonization of the land is well known, but the adaptive value of heterospory has never been well established. It was an addition to a sexual life cycle that already involved male and female gametes. Its role as a precursor to the evolution of seeds has received much attention, but this is an evolutionary consequence of heterospory that cannot explain the transition from homospory to heterospory (and the lack of evolutionary reversal from heterospory to homospory). Enforced outcrossing of gametophytes has often been mentioned in connection to heterospory, but we review the shortcomings of this argument as an explanation of the selective advantage of heterospory. Few alternative arguments concerning the selective forces favouring heterospory have been proposed, a paucity of attention that is surprising given the importance of this innovation in land plant evolution. In this review we highlight two ideas that may lead us to a better understanding of why heterospory evolved. First, models of optimal resource allocation – an approach that has been used for decades in evolutionary ecology to help understand parental investment and other life‐history patterns – suggest that an evolutionary increase in spore size could reach a threshold at which small spores yielding small, sperm‐producing gametophytes would return greater fitness per unit of resource investment than would large spores and bisexual gametophytes. With the advent of such microspores, megaspores would evolve under frequency‐dependent selection. This argument can account for the appearance of heterospory in the Devonian, when increasingly tall and complex vegetative communities presented competitive conditions that made large spore size advantageous. Second, heterospory is analogous in many ways to anisogamy. Indeed, heterospory is a kind of re‐invention of anisogamy within the context of a sporophyte‐dominant land plant life cycle. The evolution of anisogamy has been the subject of important theoretical and empirical investigation. Recent work in this area suggests that mate‐encounter dynamics set up selective forces that can drive the evolution of anisogamy. We suggest that similar dispersal and mating dynamics could have underlain spore size differentiation. The two approaches offer predictions that are consistent with currently available data but could be tested far more thoroughly. We hope to re‐establish attention on this neglected aspect of plant evolutionary biology and suggest some paths for empirical investigation.  相似文献   
89.
As a conclusion, this paper reviews briefly the content of the volume. The wealth of demographic data has not been adequately exploited in anthropology; this is why this publication is valuable in showing attempts to apply demographic data in a variety of anthropological problems. This symposium has explored many interesting points which we recall here. Yet it has also opened up a whole range of further questions on the material presented as well as in this broad field. Several directions of research could be developed, for instance, testing among human populations, over long periods, the ecological thoughts of ecosystems evolving as a cascade of instabilities, rather than a succession of equilibrium states. Let us also recall the pervasive nature of demographic facts in topics such as the energy cycle or the genetic structure and evolution of human populations.  相似文献   
90.
The sucking disc of the sharksuckers of the family Echeneidae is one of the most remarkable and most highly modified skeletal structures among vertebrates. We studied the development of the sucking disc based on a series of larval, juvenile, and adult echeneids ranging from 9.3 mm to 175 mm standard length. We revisited the question of the homology of the different skeletal parts that form the disc using an ontogenetic approach. We compared the initial stages of development of the disc with early developmental stages of the spinous dorsal fin in a representative of the morphologically basal percomorph Morone. We demonstrate that the “interneural rays” of echeneids are homologous with the proximal‐middle radials of Morone and other teleosts and that the “intercalary bones” of sharksuckers are homologous with the distal radials of Morone and other teleosts. The “intercalary bones” or distal radials develop a pair of large wing‐like lateral extensions in echeneids, not present in this form in any other teleost. Finally the “pectinated lamellae” are homologous with the fin spines of Morone and other acanthomorphs. The main part of each pectinated lamella is formed by bilateral extensions of the base of the fin spine just above its proximal tip, each of which develops a row of spinous projections, or spinules, along its posterior margin. The number of rows and the number of spinules increase with size, and they become autogenous from the body of the lamellae. We also provide a historical review of previous studies on the homology of the echeneid sucking disc and demonstrate that the most recent hypotheses, published in 2002, 2005 and 2006, are erroneous. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号