首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   60355篇
  免费   4464篇
  国内免费   1794篇
  2023年   748篇
  2022年   906篇
  2021年   1498篇
  2020年   1879篇
  2019年   2498篇
  2018年   2287篇
  2017年   1552篇
  2016年   1602篇
  2015年   1887篇
  2014年   3508篇
  2013年   4203篇
  2012年   2584篇
  2011年   3547篇
  2010年   2622篇
  2009年   2952篇
  2008年   3189篇
  2007年   3180篇
  2006年   2760篇
  2005年   2500篇
  2004年   2228篇
  2003年   1945篇
  2002年   1689篇
  2001年   1175篇
  2000年   965篇
  1999年   1042篇
  1998年   990篇
  1997年   842篇
  1996年   777篇
  1995年   779篇
  1994年   734篇
  1993年   587篇
  1992年   537篇
  1991年   476篇
  1990年   376篇
  1989年   347篇
  1988年   303篇
  1987年   306篇
  1986年   220篇
  1985年   407篇
  1984年   572篇
  1983年   487篇
  1982年   483篇
  1981年   394篇
  1980年   384篇
  1979年   296篇
  1978年   235篇
  1977年   221篇
  1976年   219篇
  1975年   185篇
  1974年   176篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
A tip-focused Ca^2+ gradient is tightly coupled to polarized pollen tube growth, and tip-localized influxes of extracellular Ca^2+ are required for this process. However the molecular identity and regulation of the potential Ca^2+ channels remains elusive. The present study has implicated CNGC18 (cyclic nucleotide-gated channel 18) in polarized pollen tube growth, because its overexpression induced wider and shorter pollen tubes. Moreover, CNGC18 overexpression induced depolarization of pollen tube growth was suppressed by lower extracellular calcium ([Ca^2+]ex). CNGC18-yellow fluorescence protein (YFP) was preferentially localized to the apparent post-Golgi vesicles and the plasma membrane (PM) in the apex of pollen tubes. The PM localization was affected by tip-localized ROP1 signaling. Expression of wild type ROP1 or an active form of ROP1 enhanced CNGC18-YFP localization to the apical region of the PM, whereas expression of RopGAP1 (a ROP1 deactivator) blocked the PM localization. These results support a role for PM-Iocalized CNGC18 in the regulation of polarized pollen tube growth through its potential function in the modulation of calcium influxes.  相似文献   
32.
The 231-residue capsid (CA) protein of human immunodeficiency virus type 1 (HIV-1) spontaneously self-assembles into tubes with a hexagonal lattice that is believed to mimic the surface lattice of conical capsid cores within intact virions. We report the results of solid-state nuclear magnetic resonance (NMR) measurements on HIV-1 CA tubes that provide new information regarding changes in molecular structure that accompany CA self-assembly, local dynamics within CA tubes, and possible mechanisms for the generation of lattice curvature. This information is contained in site-specific assignments of signals in two- and three-dimensional solid-state NMR spectra, conformation-dependent 15N and 13C NMR chemical shifts, detection of highly dynamic residues under solution NMR conditions, measurements of local variations in transverse spin relaxation rates of amide 1H nuclei, and quantitative measurements of site-specific 15N–15N dipole–dipole couplings. Our data show that most of the CA sequence is conformationally ordered and relatively rigid in tubular assemblies and that structures of the N-terminal domain (NTD) and the C-terminal domain (CTD) observed in solution are largely retained. However, specific segments, including the N-terminal β-hairpin, the cyclophilin A binding loop, the inter-domain linker, segments involved in intermolecular NTD–CTD interactions, and the C-terminal tail, have substantial static or dynamical disorder in tubular assemblies. Other segments, including the 310-helical segment in CTD, undergo clear conformational changes. Structural variations associated with curvature of the CA lattice appear to be localized in the inter-domain linker and intermolecular NTD–CTD interface, while structural variations within NTD hexamers, around local 3-fold symmetry axes, and in CTD–CTD dimerization interfaces are less significant.  相似文献   
33.
Enterohemorrhagic Escherichia coli is a causative agent of gastrointestinal and diarrheal diseases. Pathogenesis associated with enterohemorrhagic E. coli involves direct delivery of virulence factors from the bacteria into epithelial cell cytosol via a syringe-like organelle known as the type III secretion system. The type III secretion system protein EspD is a critical factor required for formation of a translocation pore on the host cell membrane. Here, we show that recombinant EspD spontaneously integrates into large unilamellar vesicle (LUV) lipid bilayers; however, pore formation required incorporation of anionic phospholipids such as phosphatidylserine and an acidic pH. Leakage assays performed with fluorescent dextrans confirmed that EspD formed a structure with an inner diameter of ∼2.5 nm. Protease mapping indicated that the two transmembrane helical hairpin of EspD penetrated the lipid layer positioning the N- and C-terminal domains on the extralumenal surface of LUVs. Finally, a combination of glutaraldehyde cross-linking and rate zonal centrifugation suggested that EspD in LUV membranes forms an ∼280–320-kDa oligomeric structure consisting of ∼6–7 subunits.  相似文献   
34.
Plant growth and development are coordinately orchestrated by environmental cues and phytohormones. Light acts as a key environmental factor for fundamental plant growth and physiology through photosensory phytochromes and underlying molecular mechanisms. Although phytochromes are known to possess serine/threonine protein kinase activities, whether they trigger a signal transduction pathway via an intracellular protein kinase network remains unknown. In analyses of mitogen-activated protein kinase kinase (MAPKK, also called MKK) mutants, the mkk3 mutant has shown both a hypersensitive response in plant hormone gibberellin (GA) and a less sensitive response in red light signaling. Surprisingly, light-induced MAPK activation in wild-type (WT) seedlings and constitutive MAPK phosphorylation in dark-grown mkk3 mutant seedlings have also been found, respectively. Therefore, this study suggests that MKK3 acts in negative regulation in darkness and in light-induced MAPK activation during dark-light transition.  相似文献   
35.
《Cytokine》2015,73(2):224-225
Balanced regulation of cytokine secretion in T cells is critical for maintenance of immune homeostasis and prevention of autoimmunity. The Rho-associated kinase (ROCK) 2 signaling pathway was previously shown to be involved in controlling of cellular movement and shape. However, recent work from our group and others has demonstrated a new and important role of ROCK2 in regulating cytokine secretion in T cells. We found that ROCK2 promotes pro-inflammatory cytokines such as IL-17 and IL-21, whereas IL-2 and IL-10 secretion are negatively regulated by ROCK2 under Th17-skewing activation. Also, in disease, but not in steady state conditions, ROCK2 contributes to regulation of IFN-γ secretion in T cells from rheumatoid arthritis patients. Thus, ROCK2 signaling is a key pathway in modulation of T-cell mediated immune responses underscoring the therapeutic potential of targeted inhibition of ROCK2 in autoimmunity.  相似文献   
36.
Chlamydia trachomatis (Ct) is a bacterial human pathogen responsible for the development of trachoma, the worldwide infection leading to blindness, and is also a major cause of sexually transmitted diseases. As iron is an essential metabolite for this bacterium, iron depletion presents a promising strategy to limit Ct proliferation. The aim of this study is to synthesize 3-isoxazolidone derivatives bearing known chelating moieties in an attempt to develop new bactericidal anti-Chlamydiaceae molecules. We have investigated the paths by which these new compounds affect Ct serovar L2 development in HeLa cells, in the presence or absence of exogenously added iron. The iron-chelating properties of these molecules were also determined. Our data reveal important bactericidal effects which are distinguishable from those due to iron chelation.  相似文献   
37.
Beyond its role as an electron acceptor in aerobic respiration, oxygen is also a key effector of many developmental events. The oxygen‐sensing machinery and the very fabric of cell identity and function have been shown to be deeply intertwined. Here we take a first look at how oxygen might lie at the crossroads of at least two of the major molecular pathways that shape pancreatic development. Based on recent evidence and a thorough review of the literature, we present a theoretical model whereby evolving oxygen tensions might choreograph to a large extent the sequence of molecular events resulting in the development of the organ. In particular, we propose that lower oxygenation prior to the expansion of the vasculature may favour HIF (hypoxia inducible factor)‐mediated activation of Notch and repression of Wnt/β‐catenin signalling, limiting endocrine cell differentiation. With the development of vasculature and improved oxygen delivery to the developing organ, HIF‐mediated support for Notch signalling may decline while the β‐catenin‐directed Wnt signalling is favoured, which would support endocrine cell differentiation and perhaps exocrine cell proliferation/differentiation.  相似文献   
38.
This study was designed to determine if the known decrease in slow axonal transport of proteins in the sciatic nerve of experimentally diabetic rats is related to altered phosphorylation of neurofilament proteins (NFPs). Rats were rendered diabetic with 50 mg/kg of streptozotocin, i.p. At 3 and 6 weeks later, NFPs were prepared from spinal cord. The in vivo phosphorylation state of NFPs was examined by using phosphate-dependent (RT97) and -independent (RMd09) antibodies against high-molecular-mass NFPs on Western blots. Neurofilament-associated kinase activity was also measured in vitro by incubation of NFPs with [32P]ATP. Phosphorylation of all three NFPs (high, medium, and low molecular mass) occurred, as confirmed by gel electrophoresis and autoradiography. At 30 min of incubation, protein-bound radioactivity in NFPs from diabetic animals was reduced to 86.7 +/- 3.4 and 54.3 +/- 19.6% of that in nondiabetic animals at 3 and 6 weeks of diabetes, respectively (p less than 0.001 and p less than 0.05, respectively). NFPs were also incubated with acid phosphatase and rephosphorylated. Results showed that the increased in vivo phosphorylation contributed to the decreased in vitro phosphorylation. Extraction of protein kinases and addition back to the NFPs revealed, in addition, a reduced activity in the diabetic animals of the protein kinases measured in vitro.  相似文献   
39.
Using benzo(a)pyrene (BaP) as a probe for aryl hydrocarbon hydroxylase (AHH) activity, differences in mixed-function oxidase (MFO) activity were observed using microspectrofluorimetry in single living cells during long term treatment with 3-methylcholanthrene (3-MC) or carbaryl. Although these two compounds differ in chemical structure, similar effects were observed in 3T3 cell populations. The results suggest that the two compounds activate the same enzymatic system and that individual cells of a supposed homogeneous cell population are not equally sensitive to xenobiotics, i.e. subpopulations were observed which have differences in AHH activity.  相似文献   
40.
Markovska  Y.K.  Dimitrov  D.S. 《Photosynthetica》2001,39(2):191-195
For the first time the expression of C3 and CAM in the leaves of different age of Marrubium frivaldszkyanum Boiss, is reported. With increasing leaf age a typical C3 photosynthesis pattern and high transpiration rate were found. In older leaves a shift to CAM occurred and the 24-h transpiration water loss decreased. A correlation was established between leaf area and accumulation of malate. Water loss at early stages of leaf expansion may be connected with the shift to CAM and the water economy of the whole plant.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号