首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   191篇
  免费   6篇
  国内免费   3篇
  2023年   1篇
  2021年   1篇
  2020年   5篇
  2019年   12篇
  2018年   6篇
  2017年   3篇
  2016年   3篇
  2015年   5篇
  2014年   16篇
  2013年   21篇
  2012年   18篇
  2011年   8篇
  2010年   13篇
  2009年   9篇
  2008年   10篇
  2007年   11篇
  2006年   10篇
  2005年   5篇
  2004年   1篇
  2003年   2篇
  2002年   2篇
  2001年   1篇
  2000年   3篇
  1999年   3篇
  1997年   3篇
  1996年   1篇
  1995年   2篇
  1991年   1篇
  1988年   2篇
  1985年   3篇
  1984年   3篇
  1983年   1篇
  1982年   5篇
  1981年   3篇
  1980年   1篇
  1977年   1篇
  1976年   2篇
  1975年   2篇
  1974年   1篇
排序方式: 共有200条查询结果,搜索用时 15 毫秒
41.
42.
Dysfunctional vascular smooth muscle (VSM) plays a vital role in the process of atherosclerosis in patients with type 2 diabetes mellitus (T2DM). Alpha-lipoic acid (ALA) can prevent the altered VSM induced by diabetes. However, the precise mechanism underlying the beneficial effect of ALA is not well understood. This study aimed to determine whether ALA ameliorates VSM function by elevating hydrogen sulfide (H2S) level in diabetes and whether this effect is associated with regulation of autophagy of VSM cells (VSMCs). We found decreased serum H2S levels in Chinese patients and rats with type 2 diabetes mellitus (T2DM). ALA treatment could increase H2S level, which reduced the autophagy-related index and activation of the 5′-monophosphate-activated protein kinase (AMPK)/mammalian target of rapamycin (mTOR) pathway, thereby protecting vascular function in rats with T2DM. Propargylglycine (PPG), a cystathionine-γ-lyase inhibitor, could weaken the ALA effect. In cultured VSMCs, high glucose level also reduced H2S level, upregulated the autophagy-related index and activated the AMPK/mTOR pathway, which were reversed by concomitant application of sodium hydrosulfide (NaHS, an H2S donor) or ALA. The protective effect of NaHS or ALA was attenuated by rapamycin (an autophagy activator), 5-amino-1-β-d-ribofuranosyl-imidazole-4-carboxamide (an AMPK activator) or PPG. In contrast, Compound C (an AMPK inhibitor) enhanced the effect of ALA or NaHS. ALA may have a protective effect on VSMCs in T2DM by elevating H2S level and downregulating autophagy via the AMPK/mTOR pathway. This study provides a new target for addressing diabetic macroangiopathy.  相似文献   
43.
 Reactions (25  °C) of galactose oxidase, GOaseox from Fusarium NRRL 2903 with five different primary-alcohol-containing substrates RCH2OH:- D-galactose (I) and 2-deoxy-d-galactose (II) (monosaccharides); methyl-β-d-galactopyranoside (III) (glycoside);d-raffinose (IV) (trisaccharide); and dihydroxyacetone (V) have been studied in the presence of O2. The GOaseox state has a tyrosyl radical coordinated at a square-pyramidal CuII active site, and is a two-equivalent oxidant. Reactant concentrations were [GOaseox] (0.8–10 μM), RCH2OH (1.0–6.0 mM), and O2 (0.14–0.29 mM), with I=0.100 M (NaCl). The reactions, monitored at 450 nm by stopped-flow spectrophotometry, terminated with depletion of the O2. Each trace was fitted to the competing reactions GOaseox+RCH2 OH → GOaseredH2+RCHO (k 1), and GOaseredH2+O2→ GOaseox+H2O2 (k 2), with GOaseredH2 written as the doubly protonated two-electron-reduced CuI product. It was necessary to avoid auto-redox interconversion of GOaseox and GOasesemi . Information obtained at pH 7.5 indicates a 5 : 95 (ox : semi) "native" mix equilibration complete in ∼3 h. At pH >7.5, rate constants 10–4k 1 / M–1 s–1 for the reactions of GOaseox with (I) (1.19), (II) (1.07), (III) (1.29), (IV) (1.81), (V) (2.94) were determined. On decreasing the pH to 5.5, k 1 values decreased by factors of up to a half, and acid dissociation pK as in the range 6.6–6.9 were obtained. UV-Vis spectrophotometric studies on GOaseox gave an independently determined pK a of 6.7. No corresponding reactions of the Tyr495Phe variant were observed, and there are no similar UV-Vis absorbance changes for this variant. The pK a is therefore assigned to protonation of Tyr-495 which is a ligand to the Cu. The rate constant k 2 (1.01×107 M–1 s–1) is independent of pH in the range 5.5–9.0 investigated, suggesting that H+ (or H-atoms) for the O2 → H2O2 change are provided by the active site of GOasered . The CuI of GOasered is less extensively complexed, and a coordination number of three is likely. Received: 4 February 1997 / Accepted: 16 May 1997  相似文献   
44.
45.
目的 为了获得白化的C57BL/6N小鼠,扩大其在皮肤移植和胚胎干细胞方面研究中的应用。方法 通过体外设计合成Cas9 mRNA和系列sgRNA(single guide RNAs),注射到小鼠的受精卵内,破坏合成C57BL/6N小鼠黑色素生成必须的酪氨酸酶(tyrosinase,TYR)基因序列的第1和第2外显子,产生基因突变,获得F0代白化的C57BL/6N小鼠,然后经过重复回交和自交,形成白化C57BL/6N小鼠近交系。结果 经过注射两对sgRNA,成功的获得了F0代的白化小鼠,在Tyr基因的第1和第2外显子中均发生了缺失突变,小鼠可以将突变基因传递给后代,并在其后代中产生了纯合的白色C57BL/6N小鼠,最后对白化小鼠突变类型进行了分析。结论 通过CRISPR-Cas9技术破坏了小鼠Tyr基因,成功地建立了白化C57BL/6N小鼠近交系,为将来的嵌合体制作、组织移植提供了新的研究工具。  相似文献   
46.
Fumarylacetoacetate hydrolase (FAH) catalyses the final step of the tyrosine degradation pathway, which is essential to animals but was of unknown importance in plants until we found that mutation of Short‐day Sensitive Cell Death1 (SSCD1), encoding Arabidopsis FAH, results in cell death under short‐day conditions. The sscd1 mutant accumulates succinylacetone (SUAC), an abnormal metabolite caused by loss of FAH. Succinylacetone is an inhibitor of δ‐aminolevulinic acid (ALA) dehydratase (ALAD), which is involved in chlorophyll (Chl) biosynthesis. In this study, we investigated whether sscd1 cell death is mediated by Chl biosynthesis and found that ALAD activity is repressed in sscd1 and that protochlorophyllide (Pchlide), an intermediate of Chl biosynthesis, accumulates at lower levels in etiolated sscd1 seedlings. However, it was interesting that Pchlide in sscd1 might increase after transfer from light to dark and that HEMA1 and CHLH are upregulated in the light–dark transition before Pchlide levels increased. Upon re‐illumination after Pchlide levels had increased, reactive oxygen species marker genes, including singlet oxygen‐induced genes, are upregulated, and the sscd1 cell death phenotype appears. In addition, Arabidopsis WT seedlings treated with SUAC mimic sscd1 in decline of ALAD activity and accumulation of Pchlide as well as cell death. These results demonstrate that increase in Pchlide causes cell death in sscd1 upon re‐illumination and suggest that a decline in the Pchlide pool due to inhibition of ALAD activity by SUAC impairs the repression of ALA synthesis from the light–dark transition by feedback control, resulting in activation of the Chl biosynthesis pathway and accumulation of Pchlide in the dark.  相似文献   
47.
48.
Much attention has recently been paid to the study of positively charged polypeptides as a possible carrier for therapeutic protein or DNA delivery to cells. In this study, we have investigated the translocation of positively charged copoly(Lys/Tyr) (MW=72000, DP=385) across lipid membranes constituted from egg-phosphatidylcholine (EPC), dioleoyl-phosphatidylethanolamine (DOPE), as well as soybean phospholipids (SBPL) using zeta potential method, circular dichroism spectroscopy (CD), electrophysiology technique, fluorescence spectroscopy, and confocal laser scanning microscopy. Results of zeta potentials show that copoly(Lys/Tyr) associate with lipid membranes and become gradually saturated on the membranes either hydrophobically or electrostatically or both. CD studies demonstrate that the copoly(Lys/Tyr) takes and remains beta-sheet conformation during its interaction with liposome membranes, indicating that the translocation process should be carpet-mode like. Data from the electrophysiology technique reveal that positively charged copoly(Lys/Tyr) can cause transmembrane currents under an applied voltage, confirming its transfer across lipid membranes. Fluorescence spectroscopy results display a three-step mechanism of translocation across membrane: adsorption, transportation, and desorption, which has been verified by results from confocal laser scanning microscopy. We provided the first direct observation that the positively charged polypeptides, copoly(Lys/Tyr), can translocate through SBPL and EPC/DOPE lipid bilayer membranes. In addition, we found that the translocation efficiency of copoly(Lys/Tyr) was higher on the EPC/DOPE lipid membrane than on the SBPL lipid membrane.  相似文献   
49.
This paper presents domain complementation studies in the mannitol transporter, EIImtl, from Escherichia coli. EIImtl is responsible for the transport and concomitant phosphorylation of mannitol over the cytoplasmic membrane. By using tryptophan-less EIImtl as a basis, each of the four phenylalanines located in the cytoplasmic loop between putative transmembrane helices II and III in the membrane-embedded C domain were replaced by tryptophan, yielding the mutants W97, W114, W126, and W133. Except for W97, these single-tryptophan mutants exhibited a high, wild-type-like, binding affinity for mannitol. Of the four mutants, only W114 showed a high mannitol phosphorylation activity. EIImtl is functional as a dimer and the effect of these mutations on the oligomeric activity was investigated via heterodimer formation (C/C domain complementation studies). The low phosphorylation activities of W126 and W133 could be increased 7-28 fold by forming heterodimers with either the C domain of W97 (IICmtlW97) or the inactive EIImtl mutant G196D. W126 and W133, on the other hand, did not complement each other. This study points towards a role of positions 97, 126 and 133 in the oligomeric activation of EIImtl. The involvement of specific residue positions in the oligomeric functioning of a sugar-translocating EII protein has not been presented before.  相似文献   
50.
Extensins, hydroxyproline‐rich repetitive glycoproteins with Ser–Hyp4 motifs, are structural proteins in plant cell walls. The leucine‐rich repeat extensin 1 (LRX1) of Arabidopsis thaliana is an extracellular protein with both a leucine‐rich repeat and an extensin domain, and has been demonstrated to be important for cell‐wall formation in root hairs. lrx1 mutants develop defective cell walls, resulting in a strong root hair phenotype. The extensin domain is essential for protein function and is thought to confer insolubilization of LRX1 in the cell wall. Here, in vivo characterization of the LRX1 extensin domain is described. First, a series of LRX1 extensin deletion constructs was produced that led to identification of a much shorter, functional extensin domain. Tyr residues can induce intra‐ and inter‐molecular cross‐links in extensins, and substitution of Tyr in the extensin domain by Phe led to reduced activity of the corresponding LRX1 protein. An additional function of Tyr (or Phe) is provided by the aromatic nature of the side chain. This suggests that these residues might be involved in hydrophobic stacking, possibly as a mechanism of protein assembly. Finally, modified LRX1 proteins lacking Tyr in the extensin domain are still insolubilized in the cell wall, indicating strong interactions of extensins within the cell wall in addition to the well‐described Tyr cross‐links.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号