首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   104篇
  免费   10篇
  国内免费   11篇
  2022年   1篇
  2021年   2篇
  2020年   5篇
  2019年   8篇
  2018年   3篇
  2017年   4篇
  2016年   2篇
  2015年   5篇
  2014年   5篇
  2013年   4篇
  2012年   3篇
  2011年   7篇
  2010年   4篇
  2009年   3篇
  2008年   6篇
  2007年   8篇
  2006年   1篇
  2005年   4篇
  2004年   2篇
  2003年   4篇
  2002年   2篇
  2001年   6篇
  2000年   4篇
  1999年   4篇
  1998年   2篇
  1997年   2篇
  1996年   2篇
  1995年   1篇
  1994年   6篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1988年   1篇
  1987年   2篇
  1985年   1篇
  1984年   1篇
排序方式: 共有125条查询结果,搜索用时 15 毫秒
91.
兰考泡桐生物量积累规律的定量研究   总被引:6,自引:0,他引:6  
对农桐复合经营兰考泡桐的干物质生产、积累和归还规律的系统研究表明,兰考泡桐生物量随树龄增大而增加,生物量在各器官的分配比例依次为:树干>树枝>树根>树叶>花;兰考泡桐年干物质生产主要集中在5~7月,占全年干物质生产总量的77.3%;兰考泡桐凋落物绝大部分为落叶,占凋落物总量的87.1%,凋落伴随年生长季节的全过程,且每年出现两次高峰;兰考泡桐干物质积累主要发生在5~7月,占全年干物质积累总量的72.7%;兰考泡桐全生育期的干物质归还率为33.73%.  相似文献   
92.
93.
  1. Shrub encroachment in seminatural grasslands threatens local biodiversity unless management is applied to reduce shrub density. Dense vegetation of Cytisus scoparius homogenizes the landscape negatively affecting local plant diversity. Detecting structural change (e.g., biomass) is essential for assessing negative impacts of encroachment. Hence, exploring new monitoring tools to achieve this task is important for effectively capturing change and evaluating management activities.
  2. This study combines traditional field‐based measurements with novel Light Detection and Ranging (LiDAR) observations from an Unmanned Aircraft System (UAS). We investigate the accuracy of mapping C. scoparius in three dimensions (3D) and of structural change metrics (i.e., biomass) derived from ultrahigh‐density point cloud data (>1,000 pts/m2). Presence–absence of 12 shrub or tree genera was recorded across a 6.7 ha seminatural grassland area in Denmark. Furthermore, 10 individuals of C. scoparius were harvested for biomass measurements. With a UAS LiDAR system, we collected ultrahigh‐density spatial data across the area in October 2017 (leaf‐on) and April 2018 (leaf‐off). We utilized a 3D point‐based classification to distinguish shrub genera based on their structural appearance (i.e., density, light penetration, and surface roughness).
  3. From the identified C. scoparius individuals, we related different volume metrics (mean, max, and range) to measured biomass and quantified spatial variation in biomass change from 2017 to 2018. We obtained overall classification accuracies above 86% from point clouds of both seasons. Maximum volume explained 77.4% of the variation in biomass.
  4. The spatial patterns revealed landscape‐scale variation in biomass change between autumn 2017 and spring 2018, with a notable decrease in some areas. Further studies are needed to disentangle the causes of the observed decrease, for example, recent winter grazing and/or frost events.
  5. Synthesis and applications: We present a workflow for processing ultrahigh‐density spatial data obtained from a UAS LiDAR system to detect change in C. scoparius. We demonstrate that UAS LiDAR is a promising tool to map and monitor grassland shrub dynamics at the landscape scale with the accuracy needed for effective nature management. It is a new tool for standardized and nonbiased evaluation of management activities initiated to prevent shrub encroachment.
  相似文献   
94.
This report describes the cloning, sequence and expression analysis of the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene of Moniliophthora perniciosa, the most important pathogen of cocoa in Brazil. Southern blot analysis revealed the presence of a single copy of the GAPDH gene in the M. perniciosa genome (MpGAPDH). The complete MpGAPDH coding sequence contained 1,461 bp with eight introns that were conserved in the GAPDH genes of other basidiomycete species. The cis-elements in the promoter region of the MpGAPDH gene were similar to those of other basidiomycetes. Likewise, the MpGAPDH gene encoded a putative 339 amino acid protein that shared significant sequence similarity with other GAPDH proteins in fungi, plants, and metazoans. Phylogenetic analyses clustered the MPGAPDH protein with other homobasidiomycete fungi of the family Tricholomataceae. Expression analysis of the MpGAPDH gene by real-time PCR showed that this gene was more expressed (~1.3X) in the saprotrophic stage of this hemibiotrophic plant pathogen than in the biotrophic stage when grown in cacao extracts.  相似文献   
95.
96.
Pistachio is an important crop in Iran, which is a major producer and exporter of pistachio nuts. The occurrence of a new disease of pistachio trees, characterized by the development of severe witches’ broom, stunted growth and leaf rosetting, was observed in Ghazvin Province. A phytoplasma was detected in infected trees by polymerase chain reaction (PCR) amplification of rRNA operon sequences. Nested PCR with primer pairs P1/P7 and R16F2n/R16R2 was used for specific detection of the phytoplasma in infected trees. To determine its taxonomy, the random fragment length polymorphism (RFLP) pattern and sequence analysis of the amplified rRNA gene were studied. Sequencing of the amplified products of the phytoplasma 16S rRNA gene indicated that pistachio witches’ broom (PWB) phytoplasma is in a separate 16S rRNA group of phytoplasmas (with sequence homology 97% in Blast search). The unique properties of the DNA of the PWB phytoplasma indicate that it is a representative of a new taxon.  相似文献   
97.
Genomic DNA of Paulownia fortunei, P. kawakamii and P. taiwaniana were amplified with 10-base primers of arbitrary sequences using the polymerase chain reaction (PCR). A total of 351 DNA fragments were amplified from 23 primers and of these 265 fragments (75.5%) were polymorphic. Almost all of the PCR-amplified products of P. taiwaniana were shared by either P. fortunei or P. kawakamii, or both, and the number of polymorphic fragments shared by P. taiwaniana and P. fortunei was about equivalent to those shared by P. taiwaniana and P. kawakamii. Restriction fragments of chloroplast DNA (cpDNA) purified from Paulownia species and from reciprocal crosses between P. fortunei and P. kawakamii were analyzed. Restriction enzyme SalI-digested cpDNA showed an identical pattern in both P. kawakamii and P. taiwaniana. These results further support the hypothesis that P. taiwaniana is the natural hybrid between P. fortunei and P. kawakamii and that the maternal parent of P. taiwaniana is P. kawakamii.This work was supported in part by the National Science Council (NSC-80-0409-B-054-06), Republic of China  相似文献   
98.
以毛泡桐、兰考泡桐和白花泡桐叶片为外植体,在其体外器官直接再生的最适MS和1/2MS培养基上,研究了不同光周期对泡桐叶片体外植株再生的影响.结果表明,光照时间为24 h的光周期可促进泡桐叶片芽的诱导,但不同种泡桐叶片芽诱导率达到最大所需时间存在一定差异.对幼芽根诱导来说,不同光周期对3种泡桐幼芽生根的作用存在差异.当幼芽诱导根时间为7 d时,光照时间长于或短于16 h的光周期都会抑制毛泡桐和兰考泡桐幼芽根的诱导,并且这些不适宜的光周期对白花泡桐和毛泡桐幼芽生根的抑制作用大于兰考泡桐.  相似文献   
99.
采用正交设计L9(34)方法,考察乙醇浓度(A)、超声时间(B)、超声功率(C)、料液比(D)对乌索酸提取率的影响,用高效液相色谱法测定含量,并与常规提取法进行对比,确定了毛泡桐中乌索酸的最佳超声提取工艺条件。所考察的因素对毛泡桐中乌索酸提取的影响按各因素作用主次顺序为:乙醇浓度>料液比>超声时间>超声功率;乌索酸超声提取的最佳条件为:A3B3C2D1,即毛泡桐叶粉末用6倍量体积分数95%乙醇超声提取2 h,超声功率为200 w。与常规的提取方法相比,超声提取具有提取时间短、操作简单、提取率高、无需加热等优点。优选的工艺条件稳定,操作简便,方法可行,可用于毛泡桐中乌索酸的提取。  相似文献   
100.
To clarify the phytoplasma associated with Huanglongbing (HLB), a detection survey of phytoplasma in field citrus trees was performed using the standardized nested PCR assay with primer set P1/16S‐Sr and R16F2n/R16R2. The HLB‐diseased citrus trees with typical HLB symptoms showed a high detection of 89.7% (322/359) of HLB‐Las, while a low detection of phytoplasma at 1.1% (4/359) was examined in an HLB‐affected Wentan pummelo (Citrus grandis) tree (1/63) and Tahiti lime (C. latifolia) trees (3/53) that were co‐infected with HLB‐Las. The phytoplasma alone was also detected in a healthy Wentan pummelo tree (1/60) at a low incidence total of 0.3% (1/347). Healthy citrus plants were inoculated with the citrus phytoplasma (WP‐DL) by graft inoculation with phytoplasma‐infected pummelo scions. Positive detections of phytoplasma were monitored only in the Wentan pummelo plant 4 months and 3.5 years after inoculation, and no symptoms developed. The citrus phytoplasma infected and persistently survived in a low titre and at a very uneven distribution in citrus plants. Peanut witches' broom (PnWB) phytoplasma (16SrII‐A) and periwinkle leaf yellowing (PLY) phytoplasma belonging to the aster yellows group (16SrI‐B) maintained in periwinkle plants were inoculated into healthy citrus plants by dodder transmission. The PnWB phytoplasma showed infection through positive detection of the nested PCR assay in citrus plants and persistently survived without symptom expression up to 4 years after inoculation. Positive detections of the phytoplasma were found in a low titre and several incidences in the other inoculated citrus plants including Ponkan mandarin, Liucheng sweet orange, Eureka lemon and Hirami lemon. None of the phytoplasma‐infected citrus plants developed symptoms. Furthermore, artificial inoculation of PLY phytoplasma (16SrI‐B) into the healthy citrus plants demonstrated no infection. The citrus symptomless phytoplasma was identified to belong to the PnWB phytoplasma group (16SrII‐A).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号