首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64386篇
  免费   5044篇
  国内免费   8233篇
  2023年   1334篇
  2022年   1540篇
  2021年   2135篇
  2020年   2157篇
  2019年   2988篇
  2018年   2382篇
  2017年   2288篇
  2016年   2279篇
  2015年   2320篇
  2014年   3297篇
  2013年   4531篇
  2012年   2634篇
  2011年   3051篇
  2010年   2445篇
  2009年   3181篇
  2008年   3250篇
  2007年   3379篇
  2006年   3029篇
  2005年   2776篇
  2004年   2453篇
  2003年   2244篇
  2002年   2038篇
  2001年   1572篇
  2000年   1400篇
  1999年   1386篇
  1998年   1225篇
  1997年   1101篇
  1996年   972篇
  1995年   963篇
  1994年   933篇
  1993年   785篇
  1992年   732篇
  1991年   734篇
  1990年   576篇
  1989年   544篇
  1988年   530篇
  1987年   439篇
  1986年   451篇
  1985年   646篇
  1984年   770篇
  1983年   447篇
  1982年   601篇
  1981年   549篇
  1980年   504篇
  1979年   390篇
  1978年   293篇
  1977年   274篇
  1976年   245篇
  1975年   182篇
  1973年   194篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
71.
72.
In order to map quantitative trait loci (QTLs) for allometries of body compositions and metabolic traits in chicken, we phenotypically characterize the allometric growths of multiple body components and metabolic traits relative to BWs using joint allometric scaling models and then establish random regression models (RRMs) to fit genetic effects of markers and minor polygenes derived from the pedigree on the allometric scalings. Prior to statistically inferring the QTLs for the allometric scalings by solving the RRMs, the LASSO technique is adopted to rapidly shrink most of marker genetic effects to zero. Computer simulation analysis confirms the reliability and adaptability of the so-called LASSO-RRM mapping method. In the F2 population constructed by multiple families, we formulate two joint allometric scaling models of body compositions and metabolic traits, in which six of nine body compositions are tested as significant, while six of eight metabolic traits are as significant. For body compositions, a total of 14 QTLs, of which 9 dominant, were detected to be associated with the allometric scalings of drumstick, fat, heart, shank, liver and spleen to BWs; while for metabolic traits, a total of 19 QTLs also including 9 dominant be responsible for the allometries of T4, IGFI, IGFII, GLC, INS, IGR to BWs. The detectable QTLs or highly linked markers can be used to regulate relative growths of the body components and metabolic traits to BWs in marker-assisted breeding of chickens.  相似文献   
73.
The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.  相似文献   
74.
75.
As a conclusion, this paper reviews briefly the content of the volume. The wealth of demographic data has not been adequately exploited in anthropology; this is why this publication is valuable in showing attempts to apply demographic data in a variety of anthropological problems. This symposium has explored many interesting points which we recall here. Yet it has also opened up a whole range of further questions on the material presented as well as in this broad field. Several directions of research could be developed, for instance, testing among human populations, over long periods, the ecological thoughts of ecosystems evolving as a cascade of instabilities, rather than a succession of equilibrium states. Let us also recall the pervasive nature of demographic facts in topics such as the energy cycle or the genetic structure and evolution of human populations.  相似文献   
76.
77.
Abstract. The nearest‐neighbour technique is used to infer competition and facilitation between the three most abundant species in a semi‐arid region of western South Africa. Relationships among the shrubs Leipoldtia schultzei and Ruschia robusta, which are leaf‐succulent members of the Mesembryanthemaceae (‘mesembs’) and Hirpicium alienatum a non‐succulent Asteraceae, were compared on two adjacent sites with different histories of browsing intensity. Competition was more prevalent and more important than facilitation. The only evidence for facilitation was found at the heavily‐browsed site where the palatable Hirpicium was larger under the unpalatable Leipoldtia. Generally the prevalence and importance of competition was reduced at the heavily‐browsed site. Strong evidence was obtained for intraspecific competition in each of the three species; also, competition was evident between the two mesembs, where Leipoldtia was competitively dominant over Ruschia, although neither species inhibited Hirpicium. Minimal competition between the mesembs and the asteraceous shrub was interpreted in terms of differentiation in rooting depth, and competition within the mesembs, in terms of overlap in rooting depth. The mesembs had the bulk of their roots in the top 5 cm of soil, while the asteraceous shrub had the bulk of its roots, and all its fine roots, at greater depths. The shallow‐rooted morphology of the mesembs is well adapted to utilize small rainfall events, which occur frequently in the Succulent Karoo, and do not penetrate the soil deeply. Modifications of existing methods are applied for analysing nearest‐neighbour interactions.  相似文献   
78.
Mass spectrometry is the predominant analytical tool used in the field of plant lipidomics. However, there are many challenges associated with the mass spectrometric detection and identification of lipids because of the highly complex nature of plant lipids. Studies into lipid biosynthetic pathways, gene functions in lipid metabolism, lipid changes during plant growth and development, and the holistic examination of the role of plant lipids in environmental stress responses are often hindered. Here, we leveraged a robust pipeline that we previously established to extract and analyze lipid profiles of different tissues and developmental stages from the model plant Arabidopsis thaliana. We analyzed seven tissues at several different developmental stages and identified more than 200 lipids from each tissue analyzed. The data were used to create a web-accessible in silico lipid map that has been integrated into an electronic Fluorescent Pictograph (eFP) browser. This in silico library of Arabidopsis lipids allows the visualization and exploration of the distribution and changes of lipid levels across selected developmental stages. Furthermore, it provides information on the characteristic fragments of lipids and adducts observed in the mass spectrometer and their retention times, which can be used for lipid identification. The Arabidopsis tissue lipid map can be accessed at http://bar.utoronto.ca/efp_arabidopsis_lipid/cgi-bin/efpWeb.cgi .  相似文献   
79.
Saturation and Utilization of Nitrate Pools in Pea and Sugar Beet Leaves   总被引:1,自引:0,他引:1  
The critical periods in the saturation of pea and sugar beet leaves with nitrate absorbed by roots were discriminated. In peas, during the first 14 h, all nitrate penetrating leaf cells was concentrated in the cytosol (metabolic pool). During the second period (14–62 h), nitrate began to flow into the vacuole (storage pool), and the filling of the metabolic pool continued. Metabolic pool was saturated by the end of this period (62 h). During the third period (62–110 h), further nitrate accumulation in the cell occurred because of expanding of the storage pool. Its saturation (similarly as total cell saturation) commenced 86 h after the start of nitrate uptake. In sugar beet leaves, both metabolic and storage nitrate pools were saturated by the end of the first period (14 h), and the sizes of these pools did not change during the second period (14–86 h). When pea plants were transferred to the nitrate-free medium, nitrate efflux began from the storage pool until its complete exhausting after 3 days. In sugar beet leaves, nitrate was still present in the storage pool 4 days after plant transfer to the nitrate-free medium. In both crops, nitrate export from the storage pool was aimed at the maintenance of the optimum nitrate concentration in the metabolic pool and, thus, at the maintenance of nitrate reductase activity. A functional diversity of nitrate compartmentation in the cells of various plant species is discussed.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号