首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Isomeric lipid signatures reveal compartmentalized fatty acid metabolism in cancer
Authors:Reuben SE Young  Andrew P Bowman  Kaylyn D Tousignant  Berwyck LJ Poad  Jennifer H Gunter  Lisa K Philp  Colleen C Nelson  Shane R Ellis  Ron MA Heeren  Martin C Sadowski  Stephen J Blanksby
Institution:1. School of Chemistry and Physics, Queensland University of Technology, Brisbane, Queensland, Australia;2. Central Analytical Research Facility (CARF), Queensland University of Technology, Brisbane, Queensland, Australia;3. The Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University, Maastricht, The Netherlands;4. Australian Prostate Cancer Research Centre - Queensland (APCRC-Q), School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Princess Alexandra Hospital, Translational Research Institute (TRI), Brisbane, Queensland, Australia;5. Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, New South Wales, Australia;6. Illawarra Health and Medical Research Institute (IHMRI), Univeristy of Wollongong, Wollongong, New South Wales, Australia;7. Institute of Pathology, University of Bern, Bern, Switzerland
Abstract:The cellular energy and biomass demands of cancer drive a complex dynamic between uptake of extracellular FAs and their de novo synthesis. Given that oxidation of de novo synthesized FAs for energy would result in net-energy loss, there is an implication that FAs from these two sources must have distinct metabolic fates; however, hitherto, all FAs have been considered part of a common pool. To probe potential metabolic partitioning of cellular FAs, cancer cells were supplemented with stable isotope-labeled FAs. Structural analysis of the resulting glycerophospholipids revealed that labeled FAs from uptake were largely incorporated to canonical (sn-) positions on the glycerol backbone. Surprisingly, labeled FA uptake also disrupted canonical isomer patterns of the unlabeled lipidome and induced repartitioning of n-3 and n-6 PUFAs into glycerophospholipid classes. These structural changes support the existence of differences in the metabolic fates of FAs derived from uptake or de novo sources and demonstrate unique signaling and remodeling behaviors usually hidden from conventional lipidomics.
Keywords:FA/transport  lipolysis and FA metabolism  lipase  phospholipid/metabolism  phospholipids/phosphatidylcholine  lipid isomers  stable-isotope tracing  imaging MS  ozone-induced dissociation  AA"}  {"#name":"keyword"  "$":{"id":"kwrd0060"}  "$$":[{"#name":"text"  "_":"arachidonic acid  AT"}  {"#name":"keyword"  "$":{"id":"kwrd0070"}  "$$":[{"#name":"text"  "_":"activation time  CE"}  {"#name":"keyword"  "$":{"id":"kwrd0080"}  "$$":[{"#name":"text"  "_":"collision energy  CID"}  {"#name":"keyword"  "$":{"id":"kwrd0090"}  "$$":[{"#name":"text"  "_":"collision-induced dissociation  DB"}  {"#name":"keyword"  "$":{"id":"kwrd0100"}  "$$":[{"#name":"text"  "_":"double bond  ER"}  {"#name":"keyword"  "$":{"id":"kwrd0120"}  "$$":[{"#name":"text"  "_":"endoplasmic reticulum  FABP"}  {"#name":"keyword"  "$":{"id":"kwrd0130"}  "$$":[{"#name":"text"  "_":"fatty acyl binding protein  FDI"}  {"#name":"keyword"  "$":{"id":"kwrd0140"}  "$$":[{"#name":"text"  "_":"fractional distribution image  GPL"}  {"#name":"keyword"  "$":{"id":"kwrd0150"}  "$$":[{"#name":"text"  "_":"glycerophospholipid  LA"}  {"#name":"keyword"  "$":{"id":"kwrd0160"}  "$$":[{"#name":"text"  "_":"linoleic acid  LIT"}  {"#name":"keyword"  "$":{"id":"kwrd0170"}  "$$":[{"#name":"text"  "_":"linear ion trap  LPCAT"}  {"#name":"keyword"  "$":{"id":"kwrd0180"}  "$$":[{"#name":"text"  "_":"lysophosphatidylcholine acyltransferase  MSI"}  {"#name":"keyword"  "$":{"id":"kwrd0190"}  "$$":[{"#name":"text"  "_":"MS imaging  NCE"}  {"#name":"keyword"  "$":{"id":"kwrd0200"}  "$$":[{"#name":"text"  "_":"normalized collision energy  NL"}  {"#name":"keyword"  "$":{"id":"kwrd0210"}  "$$":[{"#name":"text"  "_":"neutral loss  NS"}  {"#name":"keyword"  "$":{"id":"kwrd0220"}  "$$":[{"#name":"text"  "_":"nil supplemented  OzID"}  {"#name":"keyword"  "$":{"id":"kwrd0230"}  "$$":[{"#name":"text"  "_":"ozone-induced dissociation  PA"}  {"#name":"keyword"  "$":{"id":"kwrd0240"}  "$$":[{"#name":"text"  "_":"palmitic acid  PC"}  {"#name":"keyword"  "$":{"id":"kwrd0250"}  "$$":[{"#name":"text"  "_":"phosphatidylcholine  PCa"}  {"#name":"keyword"  "$":{"id":"kwrd0260"}  "$$":[{"#name":"text"  "_":"prostate cancer  PE"}  {"#name":"keyword"  "$":{"id":"kwrd0270"}  "$$":[{"#name":"text"  "_":"phosphatidylethanolamine  PG"}  {"#name":"keyword"  "$":{"id":"kwrd0280"}  "$$":[{"#name":"text"  "_":"phosphatidylglycerol  PI"}  {"#name":"keyword"  "$":{"id":"kwrd0290"}  "$$":[{"#name":"text"  "_":"phosphatidylinositol  phospholipase A2  PS"}  {"#name":"keyword"  "$":{"id":"kwrd0310"}  "$$":[{"#name":"text"  "_":"phosphatidylserine  ROS"}  {"#name":"keyword"  "$":{"id":"kwrd0320"}  "$$":[{"#name":"text"  "_":"reactive-oxidative species  SA"}  {"#name":"keyword"  "$":{"id":"kwrd0330"}  "$$":[{"#name":"text"  "_":"stearic acid  SCD-1"}  {"#name":"keyword"  "$":{"id":"kwrd0340"}  "$$":[{"#name":"text"  "_":"stearoyl-CoA desaturase 1  SFA"}  {"#name":"keyword"  "$":{"id":"kwrd0350"}  "$$":[{"#name":"text"  "_":"saturated FA  sPLA2-IIA"}  {"#name":"keyword"  "$":{"id":"kwrd0360"}  "$$":[{"#name":"text"  "$$":[{"#name":"__text__"  "_":"secretory-PLA"}  {"#name":"inf"  "$":{"loc":"post"}  "_":"2  TAG"}  {"#name":"keyword"  "$":{"id":"kwrd0370"}  "$$":[{"#name":"text"  "_":"triacylglycerol
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号