首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   3篇
  2021年   1篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
  2015年   1篇
  2014年   3篇
  2013年   5篇
  2012年   7篇
  2011年   5篇
  2010年   3篇
  2009年   8篇
  2008年   5篇
  2007年   6篇
  2006年   2篇
  2005年   1篇
  2001年   3篇
排序方式: 共有55条查询结果,搜索用时 15 毫秒
41.
42.
43.
朱建熹  沈术彤  高丽  沈伟  郭军 《生物磁学》2011,(11):2018-2021
目的:探讨脑缺血再灌后Akt和MAPK磷酸酶与JNK活性下调的关系。方法:采用成年清洁级雄性SD大鼠,建立四动脉阻断前脑缺血再灌注模型。缺血10min后再灌注不同时间(15min,1h,4h,24h)。侧脑室分别给予P13K抑制剂LY294002(LY)和MAPK磷酸酶抑制剂放线菌酮(CHO)。免疫印迹观察P-Akt和P-JNK蛋白水平变化。结果:脑缺血再灌注4h,JNK的活性能被Akt抑制剂LY294002增强,表明激活的Akt能够下调JNK信号通路。而MAPK磷酸酶抑制剂放线茵酮能上调缺血后JNK活性,提示MAPK磷酸酶通过去磷酸化参与了JNK的活性抑制。结论:前脑缺血再灌后,激活Akt和MAPK磷酸酶参与了JNK信号通路负性调节,是抑制JNK诱导缺血后中枢神经损伤的重要机制。  相似文献   
44.
45.
Mitogen-activated protein kinase (MAPK) pathways are well conserved in most organisms, from yeast to humans. The principal components of these pathways are MAP kinases whose activity is regulated by phosphorylation, implicating various MAPK protein effectors-in particular, protein phosphatases that inactivate MAPKs by dephosphorylation. The molecular basis of binding specificity of such regulatory phosphatases to MAPKs is poorly understood. To try to pinpoint potential functional regions within the sequences and to help identify new family members, we have applied a multimotif pattern-recognition approach to characterize two MAPK phosphatase subfamilies (tyrosine-specific and dual specificity) that are crucial in the regulation of MAPKs. We built "fingerprints" for these two subfamilies that are unique to, and highly discriminatory for, each group of proteins. The fingerprints were used in a genome-wide screen, identifying more than 80 MAPK phosphatase domains, several of which were in partial sequences or unclassified proteins. We confirmed experimentally that one predicted MAPK phosphatase orthologue in Xenopus binds to ERK1/2, suggesting a role in MAPK signaling and thus supporting our functional predictions. Further analysis, mapping the fingerprints on the three-dimensional structure of MAPK phosphatases, revealed that some of the fingerprint motifs reside in the N-terminal noncatalytic regions coinciding with reported MAPK binding sites, while others lie within the catalytic phosphatase domain. These results also suggest the presence of putative allosteric sites in the catalytic region for modulation of protein-protein interactions, and provide a framework for future experimental validation.  相似文献   
46.
Mitochondrial stress has been acknowledged as the pathogenesis for tumor necrosis factor-α (TNF-α)-induced septic cardiomyopathy. Recently, MAP kinase phosphatase 1 (MKP1) downregulation and mitochondrial fragmentation modulate the mitochondrial stress via multiple molecular mechanisms. Thereby, the goal of our current work is to figure out the functional role of mitochondrial fragmentation in TNF-α-induced septic cardiomyopathy. Our results exhibited that MKP1 expression was significantly repressed in hearts treated by TNF-α. Overexpression of MKP1 sustained cardiac function and attenuated cardiomyocytes death in TNF-α-treated hearts. At the molecular levels, decreased MKP1 induced mitochondrial stress, as indicated by mitochondrial calcium overloading, mitochondrial oxidative stress, mitochondrial antioxidant downregulation, mitochondrial membrane potential reduction, mitochondrial bioenergetics suppression, mitochondrial proapoptotic factors liberation, and caspase-9 apoptotic pathway activation. To the end, we illustrated that MKP1-modulated mitochondrial stress via mitochondrial fragmentation; reactivation of mitochondrial fragmentation abolished the protective effect of MKP1 overexpression on mitochondrial function. Further, MKP1 affected mitochondrial division in a mechanism through the JNK–MIEF1 axis. Blockade of JNK pathway abolished the regulatory actions of MKP1 on mitochondrial division. Altogether, our results identify MKP1 as a novel cardioprotective factor in TNF-α-related septic cardiomyopathy via affecting mitochondrial division by the way of JNK–MIEF1 signaling pathway. Therefore, MKP1 expression, mitochondrial fragmentation modification, and JNK–MIEF1 pathway modulation may be considered as potential therapeutic targets for the treatment of cardiac injury induced by sepsis.  相似文献   
47.
48.
Dual-specificity protein phosphatases participate in signal transduction pathways inactivating mitogen-activated protein kinases (MAP kinases). These signaling pathways are of critical importance in the regulation of numerous biological processes, including cell proliferation, differentiation and development. The social ameba Dictyostelium discoideum harbors 14 genes coding for proteins containing regions very similar to the dual-specificity protein phosphatase domain. One of these genes, mkpB, additionally codes for a region similar to the Rhodanase domain, characteristic of animal MAP kinase-phosphatases, in its N-terminal region. Cells that over-express this gene show increased protein phosphatase activity. mkpB is expressed in D. discoideum ameba at growth but it is greatly induced at 12h of multicellular development. Although it is expressed in all the cells of developmental structures, mkpB mRNA is enriched in cells with a distribution typical of anterior-like cells. Cells that express a catalytically inactive mutant of MkpB grow and aggregate like wild-type cells but show a greatly impaired post-aggregative development. In addition, the expression of cell-type specific genes is very delayed, indicating that this protein plays an important role in cell differentiation and development. Cells expressing the MkpB catalytically inactive mutant show increased sensitivity to cisplatin, while cells over-expressing wild type MkpB, or MkpA, proteins or mutated in the MAP kinase erkB gene are more resistant to this chemotherapeutic drug, as also shown in human tumor cells.  相似文献   
49.
Myelodysplastic syndromes (MDS) are clonal stem cell diseases that can result in cytopenias, dysplasia in one or more cell lineages, infective hematopoiesis, and increase the risk of progression to acute myeloid leukemia (AML). MDSs are characterized by several recurrent cytogenetic defects, which can affect diagnosis, prognosis, and treatment. Some of that chromosomal alterations are associated with very poor prognosis. Conventional cytogenetics cannot accurately define the rearranged karyotype. Instead, molecular cytogenetics analyses can provide important diagnostic and prognostic information for patients affected by MDS, allowing the characterization of the whole mutational spectrum and, mainly, novel chromosomal lesions.In this paper, we report a MDS case with a novel chromosomal translocation [t(17;22)(q12;q22)], described for the first time here. Following Giemsa-banding karyotyping, fluorescent in situ hybridization analyses, by using chromosome-specific probes, displayed the breakpoint regions at chromosomes 17 and 22, within which intra and inter-chromosomal segmental duplications (SD) are present. Because of the occurrence of SDs in breakpoint region, it was not possible to finely define the genomic regions where breaks fell. Further investigations could be required to better understand the molecular basis of the novel translocation t(17;22)(q12;q12) acting in MDS context and to explain if SDs could contribute to the pathogenesis of MDS.  相似文献   
50.
Parathyroid hormone (PTH) regulation of mitogen‐activated protein kinases (MAPK) ERK1/2 contributes to PTH regulation of osteoblast growth and apoptosis. We investigated the mechanisms by which PTH inhibits ERK1/2 activity in osteoblastic UMR 106‐01 cells. Treatment with PTH significantly inhibited phosphorylated ERK1/2 between 5 and 60 min. Transient transfection of cells with a cDNA encoding MAPK phosphatase‐1 (MKP‐1) resulted in 30–40% inhibition of pERK1/2; however MKP‐1 protein levels were only significantly stimulated by PTH after 30 mins, suggesting another mechanism for the early phase of pERK1/2 inhibition. The active upstream kinase c‐Raf phosphorylation at serine 338 (ser338) was significantly inhibited by PTH treatment within 5 min and transfection of the cells with constitutively‐active c‐Raf blocked PTH inhibition of pERK1/2. Inhibition of pERK1/2 and phosphor‐c‐Raf were seen when cells were treated with PTH(1‐34) or PTH(1‐31) analogues that stimulate cAMP, but not with PTH(3‐34), PTH(7‐34) or PTH(18‐48) that do not stimulate cAMP. Stimulation of the cells with forskolin or 8BrcAMP also inhibited pERK1/2 and c‐Raf.p338. Our results suggest that rapid PTH inhibition of ERK1/2 activity is mediated by PKA dependent inhibition of c‐Raf activity and that stimulation of MKP‐1 may contribute to maintaining pERK1/2 inhibition over prolonged time. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号