首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   456篇
  免费   57篇
  2023年   2篇
  2021年   6篇
  2020年   3篇
  2019年   7篇
  2018年   8篇
  2017年   5篇
  2016年   7篇
  2015年   10篇
  2014年   16篇
  2013年   37篇
  2012年   33篇
  2011年   19篇
  2010年   14篇
  2009年   19篇
  2008年   28篇
  2007年   22篇
  2006年   22篇
  2005年   17篇
  2004年   18篇
  2003年   22篇
  2002年   20篇
  2001年   11篇
  2000年   13篇
  1999年   10篇
  1998年   8篇
  1997年   7篇
  1996年   8篇
  1995年   12篇
  1994年   7篇
  1993年   9篇
  1992年   10篇
  1991年   7篇
  1990年   6篇
  1989年   10篇
  1988年   6篇
  1986年   9篇
  1985年   4篇
  1984年   3篇
  1983年   2篇
  1981年   5篇
  1978年   6篇
  1977年   3篇
  1975年   2篇
  1968年   2篇
  1966年   1篇
  1961年   1篇
  1960年   1篇
  1958年   1篇
  1957年   1篇
  1911年   3篇
排序方式: 共有513条查询结果,搜索用时 15 毫秒
1.
Cooling and lubrication agents like triethanolamine (TEA) are essential for many purposes in industry. Due to biodegradation, they need continuous replacement, and byproducts of degradation may be toxic. This study investigates an industrial (1,200 m³) cooling-lubrication circuit (CLC) that has been in operation for 20 years and is supposedly in an ecological equilibrium, thus offering a unique habitat. Next-generation (Illumina Miseq 16S rRNA amplicon) sequencing was used to profile the CLC-based microbiota and relate it to TEA and bicine dynamics at the sampling sites, influent, machine rooms, biofilms and effluent. Pseudomonas pseudoalcaligenes dominated the effluent and influent sites, while Alcaligenes faecalis dominated biofilms, and both species were identified as the major TEA degrading bacteria. It was shown that a 15 min heat treatment at 50°C was able to slow down the growth of both species, a promising option to control TEA degradation at large scale.  相似文献   
2.
In the present study, we use a model gastro-intestinal system to study the influence of different food-grade surface-active molecules (Sn-2 monopalmitin, β-lactoglobulin, or lysophosphatodylcholine) on lipase activity. The interfacial activity of lipase and surfactants are assessed with the pendant drop technique, a commonly used tensiometry instrument. A mathematical model is adopted which enables quantitative determination of the composition of the water–oil interface as a function of bulk surfactant concentration in the water–oil mixtures. Our results show a decrease in gastric lipolysis when interfacially active molecules are incorporated into a food matrix. However, only the Sn-2 monopalmitin caused a systematic decrease in triglyceride hydrolysis throughout the gastro-intestinal tract. This effect is most likely due to exclusion of both lipase and triglyceride from the water–oil interface together with a probable saturation of the solubilization capacity of bile with monoglycerides. Addition of β-lactoglobulin or lysophopholipids increased the hydrolysis of fat after the gastric phase. These results can be attributed to an increasing interfacial area with lipase and substrate present at the interface. Otherwise, β-lactoglobulin, or lysophopholipids reduced fat hydrolysis in the stomach. From the mathematical modeling of the interface composition, we can conclude that Sn-2 monopalmitin can desorb lipase from the interface, which, together with exclusion of substrate from the interface, explains the gradually decreased triglyceride hydrolysis that occurs during the digestion. Our results provide a biophysics approach on lipolysis that can bring new insights into the problem of fat uptake.  相似文献   
3.
  1. Realized trophic niches of predators are often characterized along a one‐dimensional range in predator–prey body mass ratios. This prey range is constrained by an “energy limit” and a “subdue limit” toward small and large prey, respectively. Besides these body mass ratios, maximum speed is an additional key component in most predator–prey interactions.
  2. Here, we extend the concept of a one‐dimensional prey range to a two‐dimensional prey space by incorporating a hump‐shaped speed‐body mass relation. This new “speed limit” additionally constrains trophic niches of predators toward fast prey.
  3. To test this concept of two‐dimensional prey spaces for different hunting strategies (pursuit, group, and ambush predation), we synthesized data on 63 terrestrial mammalian predator–prey interactions, their body masses, and maximum speeds.
  4. We found that pursuit predators hunt smaller and slower prey, whereas group hunters focus on larger but mostly slower prey and ambushers are more flexible. Group hunters and ambushers have evolved different strategies to occupy a similar trophic niche that avoids competition with pursuit predators. Moreover, our concept suggests energetic optima of these hunting strategies along a body mass axis and thereby provides mechanistic explanations for why there are no small group hunters (referred to as “micro‐lions”) or mega‐carnivores (referred to as “mega‐cheetahs”).
  5. Our results demonstrate that advancing the concept of prey ranges to prey spaces by adding the new dimension of speed will foster a new and mechanistic understanding of predator trophic niches and improve our predictions of predator–prey interactions, food web structure, and ecosystem functions.
  相似文献   
4.
5.
6.
Summary The antibacterial activity of phenol was determined by measuring inhibition of exponentially growing free and immobilized cells of Escherichia coli, Pseudomonas putida and Staphylococcus aureus. Immobilization of microorganisms in calcium alginate beads reduced the growth inhibition caused by bacteriostatic concentrations of phenol. The increase in phenol tolerance occurred at different culture conditions and growth rates of the cells. The strength of the effect, however, was found to correlate with the formation of colonies in the gel matrix. Dissolution of gel beads led to a substantial loss of the protection against phenol of immobilized-grown cells.  相似文献   
7.
A new scalable liposome production system is presented, which is based on the ethanol injection technique. The system permits liposome manufacture regardless of production scale, as scale is determined only by free disposable vessel volumes. Once the parameters are defined, an easy scale up can be performed by just changing the process vessels. These vessels are fully sterilizeable and all raw materials are transferred into the sanitized and sterilized system via 0.2 μm filters to guarantee an aseptic production.

Liposome size can be controlled by the local lipid concentration at the injection point depending on process parameters like injection pressure, lipid concentration and injection rate. These defined process parameters are furthermore responsible for highly reproducible results with respect to vesicle diameters and encapsulation rates Compared to other technologies like the film method which is normally followed by size reduction through high pressure homogenization, ultrasonication or extrusion, no mechanical forces are needed to generate homogeneous and narrow distributed liposomes.

Another important advantage of this method is the suitability for the entrapment of many different drug substances such as large hydrophilic proteins by passive encapsulation, small amphiphilic drugs by a one step remote loading technique or membrane association of antigens for vaccination approaches  相似文献   
8.
The room temperature co-precipitation of ferrous and ferric iron under alkaline conditions typically yields superparamagnetic magnetite nanoparticles below a size of 20 nm. We show that at pH  =  9 this method can be tuned to grow larger particles with single stable domain magnetic (> 20–30 nm) or even multi-domain behavior (> 80 nm). The crystal growth kinetics resembles surprisingly observations of magnetite crystal formation in magnetotactic bacteria. The physicochemical parameters required for mineralization in these organisms are unknown, therefore this study provides insight into which conditions could possibly prevail in the biomineralizing vesicle compartments (magnetosomes) of these bacteria.  相似文献   
9.
High viability, storability and tolerance to variable environmental conditions are key factors in the development of microbial biological control agents (BCAs). The efficacy of microbial BCAs is influenced by the culture conditions and formulation process. Therefore, we investigated the influence of diverse growth conditions on the survival during freeze-drying and on the biocontrol efficacy of Pseudomonas fluorescens strain Pf153. Culture time, temperature and media, mild heat shock and pH change influenced the bacterium viability after freeze-drying. The best survival rate was reached by cultivation in King’s broth for 16 or 20 h. Growth temperatures of 25 and 30°C and a mild heat shock at 35°C for one hour influenced the survival rate positively. In all bioassays against Botrytis cinerea on Vicia faba leaves, Pf153 showed a significant increased efficacy compared to the untreated control. No differences of the efficacy between fresh and freeze-dried cells were observed. Furthermore, a growth temperature of 20°C increased the efficacy of Pf153 against B. cinerea. These results underline that the quality of the formulated product can be improved by manipulating the fermentation process.  相似文献   
10.
Abscisic acid (ABA) is a major phytohormone involved in important stress‐related and developmental plant processes. Recent phosphoproteomic analyses revealed a large set of ABA‐triggered phosphoproteins as putative mitogen‐activated protein kinase (MAPK) targets, although the evidence for MAPKs involved in ABA signalling is still scarce. Here, we identified and reconstituted in vivo a complete ABA‐activated MAPK cascade, composed of the MAP3Ks MAP3K17/18, the MAP2K MKK3 and the four C group MAPKs MPK1/2/7/14. In planta, we show that ABA activation of MPK7 is blocked in mkk3‐1 and map3k17mapk3k18 plants. Coherently, both mutants exhibit hypersensitivity to ABA and altered expression of a set of ABA‐dependent genes. A genetic analysis further reveals that this MAPK cascade is activated by the PYR/PYL/RCAR‐SnRK2‐PP2C ABA core signalling module through protein synthesis of the MAP3Ks, unveiling an atypical mechanism for MAPK activation in eukaryotes. Our work provides evidence for a role of an ABA‐induced MAPK pathway in plant stress signalling.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号