首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3606篇
  免费   15篇
  国内免费   30篇
  2023年   16篇
  2022年   36篇
  2021年   42篇
  2020年   48篇
  2019年   65篇
  2018年   63篇
  2017年   22篇
  2016年   28篇
  2015年   33篇
  2014年   285篇
  2013年   286篇
  2012年   170篇
  2011年   347篇
  2010年   293篇
  2009年   237篇
  2008年   237篇
  2007年   274篇
  2006年   241篇
  2005年   215篇
  2004年   148篇
  2003年   129篇
  2002年   137篇
  2001年   17篇
  2000年   9篇
  1999年   8篇
  1998年   10篇
  1997年   5篇
  1996年   14篇
  1995年   8篇
  1994年   7篇
  1993年   5篇
  1992年   8篇
  1991年   13篇
  1990年   4篇
  1989年   6篇
  1988年   3篇
  1985年   16篇
  1984年   25篇
  1983年   22篇
  1982年   11篇
  1981年   14篇
  1980年   16篇
  1979年   9篇
  1978年   14篇
  1977年   13篇
  1976年   7篇
  1975年   10篇
  1974年   7篇
  1973年   6篇
  1972年   7篇
排序方式: 共有3651条查询结果,搜索用时 15 毫秒
41.
Quinoxaline derivatives (quinoxalines) comprise a class of drugs that have been widely used as animal antimicrobial agents and feed additives. Although the metabolism of quinoxaline drugs has been mostly studied using chicken liver microsomes, the biochemical mechanism of biotransformation of these chemicals in the chicken has yet to be characterized. In this study, using bacteria produced enzymes, we demonstrated that both CYP1A4 and CYP1A5 participate in the oxidative metabolism of quinoxalines. For CYP1A5, three hydroxylated metabolites of quinocetone were generated. In addition, CYP1A5 is able to hydroxylate carbadox. For CYP1A4, only one hydroxylated product of quinocetone on the phenyl ring was identified. Neither CYP1A5 nor CYP1A4 showed hydroxylation activity towards mequindox and cyadox. Our results suggest that CYP1A4 and CYP1A5 have different and somewhat overlapping substrate specificity in quinoxaline metabolism, and CYP1A5 represents a crucial enzyme in hydroxylation of both quinocetone and carbadox.  相似文献   
42.
Sphingosine-1-phosphate (S1P) is a pleiotropic lipid mediator that acts either on G protein-coupled S1P receptors on the cell surface or via intracellular target sites. In addition to the well established effects of S1P in angiogenesis, carcinogenesis and immunity, evidence is now continuously accumulating which demonstrates that S1P is an important regulator of fibrosis. The contribution of S1P to fibrosis is of a Janus-faced nature as S1P exhibits both pro- and anti-fibrotic effects depending on its site of action. Extracellular S1P promotes fibrotic processes in a S1P receptor-dependent manner, whereas intracellular S1P has an opposite effect and dampens a fibrotic reaction by yet unidentified mechanisms. Fibrosis is a result of chronic irritation by various factors and is defined by an excess production of extracellular matrix leading to tissue scarring and organ dysfunction. In this review, we highlight the general effects of extracellular and intracellular S1P on the multistep cascade of pathological fibrogenesis including tissue injury, inflammation and the action of pro-fibrotic cytokines that stimulate ECM production and deposition. In a second part we summarize the current knowledge about the involvement of S1P signaling in the development of organ fibrosis of the lung, kidney, liver, heart and skin. Altogether, it is becoming clear that targeting the sphingosine kinase-1/S1P signaling pathway offers therapeutic potential in the treatment of various fibrotic processes. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.  相似文献   
43.
Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   
44.
The capacity of β cells to expand in response to insulin resistance is a critical factor in the development of type 2 diabetes. Proliferation of β cells is a major component for these adaptive responses in animal models. The extracellular signals responsible for β-cell expansion include growth factors, such as insulin, and nutrients, such as glucose and amino acids. AKT activation is one of the important components linking growth signals to the regulation of β-cell expansion. Downstream of AKT, tuberous sclerosis complex 1 and 2 (TSC1/2) and mechanistic target of rapamycin complex 1 (mTORC1) signaling have emerged as prime candidates in this process, because they integrate signals from growth factors and nutrients. Recent studies demonstrate the importance of mTORC1 signaling in β cells. This review will discuss recent advances in the understanding of how this pathway regulates β-cell mass and present data on the role of TSC1 in modulation of β-cell mass. Herein, we also demonstrate that deletion of Tsc1 in pancreatic β cells results in improved glucose tolerance, hyperinsulinemia and expansion of β-cell mass that persists with aging.  相似文献   
45.
In the brain, apolipoprotein E (APOE) delivers cholesterol-rich lipoproteins to neurons to support synaptogenesis and maintenance of synaptic connections. Three APOE alleles exist in the human population with ε4 being an Alzheimer disease (AD) risk gene and ε2 being protective relative to the common ε3 variant. Many hypotheses have been advanced concerning allele-specific effects of APOE on neurodegeneration including effects on Aβ clearance, synaptic transmission, or neurotoxicity. Central to most proposed APOE functions is its interaction with receptors that mediate cellular uptake of this ligand. Several members of the LDL receptor gene family have been implicated as APOE receptors in the (patho)physiology of APOE in the brain, yet their specific modes of action in AD remain controversial. Recently, the pro-neurotrophin receptor sortilin has been identified as a novel APOE receptor in neurons. Ablation of sortilin expression in mice results in accumulation of APOE and Aβ in the brain. Moreover, primary neurons lacking sortilin exhibit significantly impaired uptake of APOE/Aβ complexes. Despite increased brain APOE levels, sortilin-deficient animals recapitulate anomalies in brain lipid homeostasis seen in APOE null mice, indicating functional deficiency in APOE uptake pathways. Taken together, these findings suggest a link between Aβ catabolism and pro-neurotrophin signaling converging on this receptor pathway.  相似文献   
46.
目的:了解张家口地区木糖氧化无色杆菌耐药性的相关基因的基因型别,为临床合理使用抗生素提供实验依据。方法:应用改良三维试验法筛选耐β-内酰胺类药物的菌株,再结合PCR技术和序列测定检测耐药菌ESBLs和AmpC酶的基因型别,最后进行统计学分析。结果:2010年12月~2011年12月本地区临床分离的48株木糖无色杆菌菌株中有32株对β-内酰胺类药物耐药,检出率高达66.7%,其中14株单产ESBLs,5株单产AmpC酶,9株同时产ESBLs和AmpC酶,4株为未知型菌株;筛选出的耐药菌中有24株PCR结果阳性,分属于不同耐药基因型并发现存在多重耐药基因。ESBLs以TEM型检出率最高,均为TEM-1亚型;AmpC酶检出率也较高,均为DHA-1型;多重耐药基因TEM+CTX-M-1+AmpC检出率最高。结论:张家口地区木糖氧化无色杆菌的耐药现象严重,临床上应严格掌握头抱菌素类药物的使用以取得更好的治疗效果。  相似文献   
47.
Cerebral amyloid angiopathy is caused by deposition of the amyloid β-peptide which consists of mainly 39–40 residues to the cortical and leptomeningeal vessel walls. There are no definite in vitro systems to support the hypothesis that the vascular basement membrane may act as a scaffold of amyloid β-peptide carried by perivascular drainage flow and accelerate its amyloid fibril formation in vivo. We previously reported the critical roles of interfaces and agitation on the nucleation of amyloid fibrils at low concentrations of amyloid β-peptide monomers. Here, we reproduced the perivascular drainage flow in vitro by using N-hydroxysuccinimide-Sepharose 4 Fast flow beads as an inert stirrer in air-free wells rotated at 1 rpm. We then reproduced the basement membranes in the media of cerebral arteries in vitro by conjugating Matrigel and other proteins on the surface of Sepharose beads. These beads were incubated with 5 μM amyloid β(1–40) at 37 °C without air, where amyloid β(1–40) alone does not form amyloid fibrils. Using the initiation time of fibril growth kinetics (i.e., the lag time of fibril growth during which nuclei, on-pathway oligomers and protofibrils are successively formed) as a parameter of the efficiency of biological molecules to induce amyloid fibril formation, we found that basement membrane components including Matrigel, laminin, fibronectin, collagen type IV and fibrinogen accelerate the initiation of amyloid β-peptide fibril growth in vitro. These data support the essential role of vascular basement membranes in the development of cerebral amyloid angiopathy.  相似文献   
48.
DNA damage created by endogenous or exogenous genotoxic agents can exist in multiple forms, and if allowed to persist, can promote genome instability and directly lead to various human diseases, particularly cancer, neurological abnormalities, immunodeficiency and premature aging. To avoid such deleterious outcomes, cells have evolved an array of DNA repair pathways, which carry out what is typically a multiple-step process to resolve specific DNA lesions and maintain genome integrity. To fully appreciate the biological contributions of the different DNA repair systems, one must keep in mind the cellular context within which they operate. For example, the human body is composed of non-dividing and dividing cell types, including, in the brain, neurons and glial cells. We describe herein the molecular mechanisms of the different DNA repair pathways, and review their roles in non-dividing and dividing cells, with an eye toward how these pathways may regulate the development of neurological disease.  相似文献   
49.
50.
The spread of multidrug resistant bacteria owing to the intensive use of antibiotics is challenging current antibiotic therapies, and making the discovery and evaluation of new antimicrobial agents a high priority. The evaluation of novel peptide sequences of predicted antimicrobial peptides from different sources is valuable approach to identify alternative antibiotic leads. Two strategies were pursued in this study to evaluate novel antimicrobial peptides from the human β-defensin family (hBD). In the first, a 32-residue peptide was designed based on the alignment of all available hBD primary structures, while in the second a putative 35-residue peptide, hBD10, was mined from the gene DEFB110. Both hBDconsensus and hBD10 were chemically synthesized, folded and purified. They showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Mycobacterium tuberculosis, but were not hemolytic on human red blood cells. The NMR-based solution structure of hBDconsensus revealed that it adopts a classical β-defensin fold and disulfide connectivities. Even though the mass spectrum of hBD10 confirmed the formation of three disulfide bonds, it showed limited dispersion in 1H NMR spectra and structural studies were not pursued. The evaluation of different β-defensin structures may identify new antimicrobial agents effective against multidrug-resistant bacterial strains.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号