首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   865篇
  免费   56篇
  2023年   3篇
  2022年   5篇
  2021年   28篇
  2020年   9篇
  2019年   14篇
  2018年   22篇
  2017年   21篇
  2016年   28篇
  2015年   50篇
  2014年   58篇
  2013年   80篇
  2012年   69篇
  2011年   66篇
  2010年   47篇
  2009年   40篇
  2008年   47篇
  2007年   64篇
  2006年   59篇
  2005年   47篇
  2004年   26篇
  2003年   34篇
  2002年   32篇
  2001年   7篇
  2000年   1篇
  1999年   7篇
  1998年   8篇
  1997年   5篇
  1996年   2篇
  1995年   4篇
  1994年   4篇
  1993年   4篇
  1992年   5篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1986年   1篇
  1985年   2篇
  1983年   3篇
  1981年   3篇
  1980年   4篇
  1978年   3篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1973年   1篇
  1970年   1篇
排序方式: 共有921条查询结果,搜索用时 15 毫秒
1.
Aim The seagrass, Posidonia oceanica is a clonal angiosperm endemic to the Mediterranean Sea. Previous studies have suggested that clonal growth is far greater than sexual recruitment and thus leads to low clonal diversity within meadows. However, recently developed microsatellite markers indicate that there are many different genotypes, and therefore many distinct clones present. The low resolution of markers used in the past limited our ability to estimate clonality and assess the individual level. New high‐resolution dinucleotide microsatellites now allow genetically distinct individuals to be identified, enabling more reliable estimation of population genetic parameters across the Mediterranean Basin. We investigated the biogeography and dispersal of P. oceanica at various spatial scales in order to assess the influence of different evolutionary factors shaping the distribution of genetic diversity in this species. Location The Mediterranean. Methods We used seven hypervariable microsatellite markers, in addition to the five previously existing markers, to describe the spatial distribution of genetic variability in 34 meadows spread throughout the Mediterranean, on the basis of an average of 35.6 (± 6.3) ramets sampled. Results At the scale of the Mediterranean Sea as a whole, a strong east–west cleavage was detected (amova) . These results are in line with those obtained using previous markers. The new results showed the presence of a putative secondary contact zone at the Siculo‐Tunisian Strait, which exhibited high allelic richness and shared alleles absent from the eastern and western basins. F statistics (pairwise θ ranges between 0.09 and 0.71) revealed high genetic structure between meadows, both at a small scale (about 2 to 200 km) and at a medium scale within the eastern and western basins, independent of geographical distance. At the intrameadow scale, significant spatial autocorrelation in six out of 15 locations revealed that dispersal can be restricted to the scale of a few metres. Main conclusions A stochastic pattern of effective migration due to low population size, turnover and seed survival is the most likely explanation for this pattern of highly restricted gene flow, despite the importance of an a priori seed dispersal potential. The east–west cleavage probably represents the outline of vicariance caused by the last Pleistocene ice age and maintained to this day by low gene flow. These results emphasize the diversity of evolutionary processes shaping the genetic structure at different spatial scales.  相似文献   
2.
The ability of leaves to acclimate photosynthetically to low temperature was examined during leaf development in winter rye plants ( Secale cereale L. cv. Puma) grown at 20°C or at 6°C. All leaves grown at 6°C exhibit increased chlorophyll (Chl) levels per leaf area, higher rates of uncoupled, light-saturated photosystem I (PSI) electron transport, and slower increases in photosystem II (PSII) electron transport capacity, when compared with 20°C leaves. The stoiehiometry of PSI and PSII was estimated for each leaf age class by quantifying Chl in elcctrophorctic separations of Chl-protein complexes. The ratio of PSII/PSI electron transport in 20°C leaves is highly correlated with the ratio of core Chl a -proteins associated with PSII (CPa) to those associated with PSI (CP1). In contrast, PSII/PSI electron transport in 6°C leaves is not as well correlated with CPa/CP1 and is related, in part, to the amount and organization of light-harvesting Chl a/b -proteins associated with PSII. CPa/CP1 increases slowly in 6°C leaves, although the ratio of CPa/CP1 in mature 20°C and 6°C leaves is not different. The results suggest that increased PSI activity at low temperature is not related to an increase in the relative proportion of PSI and may reflect, instead, a regulatory change. Photosynthetic acclimation to low environmental temperature involves increased PSI activity in mature leaves shifted to 6°C. In leaves grown entirely at 6°C, however, acclimation includes both increased PSI activity and modifications in the rate of accumlation of PSII and in the organization of LHCII.  相似文献   
3.
4.
Reaction of the allylidene tungsten complex [W(CPhCHCHMe)Br2(CO)2(4-picoline)] (1) with the dithiocarbamates MS2CNR2 (a: M=Na, R=Et; b: M=Na, R=Me; c: M=Li, R=Ph) in THF at 50 °C affords the vinylketene tungsten complexes [W(S2CNR2)2(OCCPhCHCHMe)(CO)] (2a–c). At lower temperatures, four reaction intermediates (3–6) may be discerned. Spectroscopic studies indicate that these compounds contain η4-allyldithiocarbamate ligands which are generated by addition of dithiocarbamate across the metal-carbon double bond of the allylidene-tungsten unit in 1. The structures of [W(S2CNEt2)2(OCCPhCHCHMe)(CO)] (2a) and of one intermediate, [W(η4-Et2NCS2CPhCHCHMe)(S2CNEt2)(CO)2] (5a) were elucidated by X-ray crystallography.  相似文献   
5.
The relationship between the size of the light harvesting antenna to photosystem II (LHCII) and quenching of non-photochemical and dark level fluorescence was studied in wild-type rye (Secale cereale L. cv. Musketeer) and barley (Hordeum vulgare L. cv. Gunilla) as well as in the barley chlorophyll b-less chlorina F2 mutant (H. vulgare L. cv. Dornaria, chlorina-F2). Exposure for 10 min to an irradiance of 500 μmol m?2 s?1 resulted in a strong (0.71–0.73) non-photochemical (qs) quenching of the fluorescence yield in wild-type (WT) material, while the barley chlorina F2-mutant was quenched to 75% of this level. Relaxation of qs in darkness revealed a fast initial decay, related to relaxation of the high-energy-state dependent (qE) part of qs. Etiolated seedlings of rye and barley exposed to intermittent light (IML) for 36 cycles of 2 min light and 118 min darkness had suppressed Chl b and LHCII-production in both WT rye and barley, while the barley chlorina F2-mutant became totally devoid of all LHCII-polypeptides. It was found that the levels of qs and qs were similar in control grown barley chlorina F2 and IML-grown WT rye and barley, but qs was reduced by 30 to 35% and qs by 50 to 65%, respectively, as compared to control-grown. WT plants. No significant qs could be detected in IML-grown barley chlorina F2. It is clear, from these changes in in vivo fluorescence quenching in rye and barley that a significant level of qs is detectable even in the absence of LHCII. Only when the proximal antennae are totally absent, does qE completely disappear. We conclude that the presence of LHCII is not an absolute requirement for qE-quenching and suggest that distal as well as proximal antenna may contribute to qE in vivo.  相似文献   
6.
7.
Northern corn leaf blight, caused by the fungal pathogen Exserohilum turcicum, is a major disease of maize. The first major locus conferring resistance to E. turcicum race 0, Ht1, was identified over 50 years ago, but the underlying gene has remained unknown. We employed a map-based cloning strategy to identify the Ht1 causal gene, which was found to be a coiled-coil nucleotide-binding, leucine-rich repeat (NLR) gene, which we named PH4GP-Ht1. Transgenic testing confirmed that introducing the native PH4GP-Ht1 sequence to a susceptible maize variety resulted in resistance to E. turcicum race 0. A survey of the maize nested association mapping genomes revealed that susceptible Ht1 alleles had very low to no expression of the gene. Overexpression of the susceptible B73 allele, however, did not result in resistant plants, indicating that sequence variations may underlie the difference between resistant and susceptible phenotypes. Modelling of the PH4GP-Ht1 protein indicated that it has structural homology to the Arabidopsis NLR resistance gene ZAR1, and probably forms a similar homopentamer structure following activation. RNA sequencing data from an infection time course revealed that 1 week after inoculation there was a threefold reduction in fungal biomass in the PH4GP-Ht1 transgenic plants compared to wild-type plants. Furthermore, PH4GP-Ht1 transgenics had significantly more inoculation-responsive differentially expressed genes than wild-type plants, with enrichment seen in genes associated with both defence and photosynthesis. These results demonstrate that the NLR PH4GP-Ht1 is the causal gene underlying Ht1, which represents a different mode of action compared to the previously reported wall-associated kinase northern corn leaf blight resistance gene Htn1/Ht2/Ht3.  相似文献   
8.
9.
Erythrocyte producing tissues of genetically anemicW/W v mice were completely populated and the anemic mice were permanently cured by marrow cell grafts from donors that differed at theEa-2 locus. Circulating erythrocytes contained ≧ 80% donor Ea-2 antigen and ≧ 90% donor hemoglobin. Population occurred without immunosuppressive treatment. No sign of graft-versus-host reaction was observed, although donors were congenic with one parent strain of the F1 hybrid recipients. When partially congenic donors carrying the T6 chromosome marker were used, the immune systems of curedW-anemic mice were populated to an appreciable extent by donor cells. The dependence of cure upon route of injection and the persistence of functioning donor type cells across the strong immunological barrier of the Ea-2 system are discussed.  相似文献   
10.
Body site is highly relevant for melanoma: it affects prognosis and varies according to the patient's sex. The distribution of naevi, a major risk factor for melanoma, at different body sites also varies according to sex in childhood. Using naevus counts at different body sites in 492 unrelated adults from both sexes, we observed that women have an increased number of naevi on the lower limbs compared to men (p = 8.5 × 10?5), showing that a high naevus count on this site persists from childhood throughout life. Then, using data from 3,232 twins, we observed, in women, the lowest naevus count heritability on the trunk (26%), and the highest on the lower limbs (69%). Finally, we showed that, in 2,864 women, six genomic loci previously associated with both naevus count and melanoma risk (IRF4, DOCK8, MTAP, 9q31.2, KITLG and PLA2G6) have an effect on naevus count that is body site‐specific, but whose effect sizes are predominantly stronger on the lower limbs. Sex‐specific genetic influence on naevus count at different sites may explain differences in site‐specific melanoma incidence as well as prognosis between sexes.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号