首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144352篇
  免费   8209篇
  国内免费   10037篇
  2023年   1657篇
  2022年   1969篇
  2021年   3669篇
  2020年   3607篇
  2019年   5043篇
  2018年   4079篇
  2017年   3224篇
  2016年   3622篇
  2015年   5036篇
  2014年   7670篇
  2013年   10283篇
  2012年   6280篇
  2011年   8552篇
  2010年   6411篇
  2009年   7021篇
  2008年   7280篇
  2007年   7512篇
  2006年   6794篇
  2005年   6010篇
  2004年   5287篇
  2003年   4564篇
  2002年   4057篇
  2001年   3027篇
  2000年   2653篇
  1999年   2680篇
  1998年   2470篇
  1997年   2179篇
  1996年   1971篇
  1995年   2149篇
  1994年   1986篇
  1993年   1833篇
  1992年   1776篇
  1991年   1545篇
  1990年   1354篇
  1989年   1253篇
  1988年   1225篇
  1987年   1168篇
  1986年   857篇
  1985年   1359篇
  1984年   1799篇
  1983年   1308篇
  1982年   1716篇
  1981年   1212篇
  1980年   1199篇
  1979年   1101篇
  1978年   681篇
  1977年   573篇
  1976年   455篇
  1975年   347篇
  1973年   341篇
排序方式: 共有10000条查询结果,搜索用时 912 毫秒
51.
Cyanobacteria are one of the principal sources of volatile organic compounds (VOCs) which cause offensive taste and odor (T&O) in drinking and recreational water, fish, shellfish and other seafood. Although non-toxic to humans, these T&O compounds severely undermine public trust in these commodities, resulting in substantial costs in treatment, and lost revenue to drinking water, aquaculture, food and beverage and tourist/hospitality industries. Mitigation and control have been hindered by the complexity of the communities and processes which produce and modify T&O events, making it difficult to source-track the major producer(s) and the factors governing VOC production and fate. Over the past decade, however, advances in bioinformatics, enzymology, and applied detection technologies have greatly enhanced our understanding of the pathways, the enzymes and the genetic coding for some of the most problematic VOCs produced by cyanobacteria. This has led to the development of tools for rapid and sensitive detection and monitoring for the VOC production at source, and provided the basis for further diagnostics of endogenous and exogenous controls. This review provides an overview of current knowledge of the major cyanobacterial VOCs, the producers, the biochemistry and the genetics and highlight the current applications and further research needs in this area.  相似文献   
52.
目的 研究严重急性呼吸综合征冠状病毒2(SARS-CoV-2)膜蛋白对宿主细胞mRNA前体(pre-mRNA)3"非翻译区(UTR)加工的影响。方法 本研究以人肺上皮细胞系A549为模型,利用瞬时转染在细胞内过表达SARS-CoV-2膜蛋白;利用RNA-Seq测序技术及生物信息学分析方法,系统性描绘宿主细胞选择性多聚腺苷酸化(alternative polyadenylation,APA)事件;Metascape数据库对发生显著APA变化的基因进行功能富集分析;RT-qPCR验证靶基因3"UTR长度变化;蛋白质免疫印迹(Western blot)检测目的蛋白表达水平。结果 SARS-CoV-2膜蛋白外源表达后宿主细胞内共813个基因发生显著APA变化。GO和KEGG分析显示,差异APA基因广泛参与有丝分裂细胞周期、调节细胞应激等生物过程,涉及病毒感染和蛋白质加工等。从中进一步筛选出AKT1基因,在IGV软件中显示3"UTR延长;RT-qPCR验证AKT1基因的3"UTR长度变化趋势;Western blot结果显示AKT1蛋白磷酸化水平增加。结论 SARS-CoV-2膜蛋白潜在影响宿主pre-mRNA的3"UTR加工,其中参与多种病毒性生物过程的AKT1基因 3"UTR延长,且其编码的蛋白质功能在细胞内被激活。  相似文献   
53.
Ataxia-telangiectasia mutated (ATM) plays crucial roles in DNA damage responses, especially with regard to DNA double-strand breaks (DSBs). However, it appears that ATM can be activated not only by DSB, but also by some changes in chromatin architecture, suggesting potential ATM function in cell cycle control. Here, we found that ATM is involved in timely degradation of Cdt1, a critical replication licensing factor, during the unperturbed S phase. At least in certain cell types, degradation of p27Kip1 was also impaired by ATM inhibition. The novel ATM function for Cdt1 regulation was dependent on its kinase activity and NBS1. Indeed, we found that ATM is moderately phosphorylated at Ser1981 during the S phase. ATM silencing induced partial reduction in levels of Skp2, a component of SCFSkp2 ubiquitin ligase that controls Cdt1 degradation. Furthermore, Skp2 silencing resulted in Cdt1 stabilization like ATM inhibition. In addition, as reported previously, ATM silencing partially prevented Akt phosphorylation at Ser473, indicative of its activation, and Akt inhibition led to modest stabilization of Cdt1. Therefore, the ATM-Akt-SCFSkp2 pathway may partly contribute to the novel ATM function. Finally, ATM inhibition rendered cells hypersensitive to induction of re-replication, indicating importance for maintenance of genome stability.  相似文献   
54.
55.
Apical sodium-dependent bile acid transporter (ASBT) catalyses uphill transport of bile acids using the electrochemical gradient of Na+ as the driving force. The crystal structures of two bacterial homologues ASBTNM and ASBTYf have previously been determined, with the former showing an inward-facing conformation, and the latter adopting an outward-facing conformation accomplished by the substitution of the critical Na+-binding residue glutamate-254 with an alanine residue. While the two crystal structures suggested an elevator-like movement to afford alternating access to the substrate binding site, the mechanistic role of Na+ and substrate in the conformational isomerization remains unclear. In this study, we utilized site-directed alkylation monitored by in-gel fluorescence (SDAF) to probe the solvent accessibility of the residues lining the substrate permeation pathway of ASBTNM under different Na+ and substrate conditions, and interpreted the conformational states inferred from the crystal structures. Unexpectedly, the crosslinking experiments demonstrated that ASBTNM is a monomer protein, unlike the other elevator-type transporters, usually forming a homodimer or a homotrimer. The conformational dynamics observed by the biochemical experiments were further validated using DEER measuring the distance between the spin-labelled pairs. Our results revealed that Na+ ions shift the conformational equilibrium of ASBTNM toward the inward-facing state thereby facilitating cytoplasmic uptake of substrate. The current findings provide a novel perspective on the conformational equilibrium of secondary active transporters.  相似文献   
56.
57.
Toxoplasma gondii is a human protozoan parasite that belongs to the phylum of Apicomplexa and causes toxoplasmosis. As the other members of this phylum, T. gondii obligatory multiplies within a host cell by a peculiar type of mitosis that leads to daughter cell assembly within a mother cell. Although parasite growth and virulence have been linked for years, few molecules controlling mitosis have been yet identified and they include a couple of kinases but not the counteracting phosphatases. Here, we report that in contrast to other animal cells, type 2C is by far the major type of serine threonine phosphatase activity both in extracellular and in intracellular dividing parasites. Using wild type and transgenic parasites, we characterized the 37 kDa TgPP2C molecule as an abundant cytoplasmic and nuclear enzyme with activity being under tight regulation. In addition, we showed that the increase in TgPP2C activity significantly affected parasite growth by impairing cytokinesis while nuclear division still occurred. This study supports for the first time that type 2C protein phosphatase is an important regulator of cell growth in T. gondii.  相似文献   
58.
A radioimmunoassay for 3′-iodothyronine has been developed. All iodothyronine analogues (except 3,3′-diiodothyronine) showed very little (0.02% at most) cross-reactivity, and the assay was sensitive to 1 pg 3′-iodothyronine/ tube. We have studied the 5′-deiodination of 3′,5′-diiodothyronine by rat liver microsomal fraction in the presence of dithiothreitol. Production of 3′-iodothyronine at 37°C was found to be linear with time of incubation up to 30 min and with concentration of microsomal protein up to 100 μg/ml. The reaction rate reached a limit on increasing 3′,5′-diiodothyronine concentration to 10 μM. The effect of pH on 3′-iodothyronine production was found to depend on 3′,5′-diiodothyronine concentration. Increasing 3′,5′-diiodothyronine concentration from 0.1 to 10 μM resulted in a shift of the pH optimum from 6–6.5 to 7.5. Similar effects on the 5′-deiodination of 3,3′,5′-triiodothyronine were observed, supporting the hypothesis that these reactions are catalysed by a single enzyme (iodothyronine 5′-deiodinase).  相似文献   
59.
Jean-Marc Versel  Guy Mayor 《Planta》1985,164(1):96-100
The elongation rate, the gradient of the local elongation rate and the surface pH of maize roots were measured over 12 h. A data bank was constituted by storing these values. By sorting these results on the basis of different elongation rates, different classes of root were obtained. Two classes were chosen: the low-growth roots and the high-growth roots. The mean growth of these two root classes was stable with time and differed significantly from one another. The surface pH of the elongation zone was the same for the roots of these two classes, but the roots selected for their higher growth rate had a larger acid efflux in this zone.  相似文献   
60.
《Cell reports》2020,30(4):1052-1062.e5
  1. Download : Download high-res image (154KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号