首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   236篇
  免费   13篇
  国内免费   10篇
  2023年   1篇
  2022年   2篇
  2021年   6篇
  2020年   7篇
  2019年   5篇
  2018年   7篇
  2017年   3篇
  2016年   6篇
  2015年   13篇
  2014年   25篇
  2013年   15篇
  2012年   9篇
  2011年   22篇
  2010年   9篇
  2009年   17篇
  2008年   25篇
  2007年   21篇
  2006年   6篇
  2005年   12篇
  2004年   9篇
  2003年   8篇
  2002年   4篇
  2001年   4篇
  2000年   3篇
  1999年   5篇
  1998年   6篇
  1997年   3篇
  1996年   2篇
  1994年   2篇
  1993年   1篇
  1990年   1篇
排序方式: 共有259条查询结果,搜索用时 31 毫秒
81.
Legally certified sturgeon fisheries require population protection and conservation methods, including DNA tests to identify the source of valuable sturgeon roe. However, the available genetic data are insufficient to distinguish between different sturgeon populations, and are even unable to distinguish between some species. We performed high‐throughput single‐nucleotide polymorphism (SNP)‐genotyping analysis on different populations of Russian (Acipenser gueldenstaedtii), Persian (A. persicus), and Siberian (A. baerii) sturgeon species from the Caspian Sea region (Volga and Ural Rivers), the Azov Sea, and two Siberian rivers. We found that Russian sturgeons from the Volga and Ural Rivers were essentially indistinguishable, but they differed from Russian sturgeons in the Azov Sea, and from Persian and Siberian sturgeons. We identified eight SNPs that were sufficient to distinguish these sturgeon populations with 80% confidence, and allowed the development of markers to distinguish sturgeon species. Finally, on the basis of our SNP data, we propose that the A. baerii‐like mitochondrial DNA found in some Russian sturgeons from the Caspian Sea arose via an introgression event during the Pleistocene glaciation.  相似文献   
82.
目的 了解深圳市人民医院产超广谱β-内酰胺酶(ESBLs)肺炎克雷伯菌的ESBLs和头孢菌素(AmpC)酶基因型分布特点.方法 收集深圳市人民医院产ESBLs肺炎克雷伯菌临床菌株64株,PCR法分别扩增菌株的TEM、SHV、CTX-M基因,并进行DNA测序分型.同时应用多重PCR对其中的头孢西丁耐药株进行AmpC酶基因扩增,DNA序列确定其基因型.结果 64株产ESBLs肺炎克雷伯菌中,61株(95.3%)检出至少一种ESBLs基因.其中51.6% (33/64)检出SHV-12基因,46.9%(30/64)检出CTX-M-14基因.11株(17.2%)检出AmpC基因,其中10株为DHA-1型,1株为CYM-2型.19株(29.7%)检出2种以上的ESBLs或ESBLs合并AmpC基因.结论 该院产ESBLs肺炎克雷伯菌中,最常见的ESBLs基因型为SHV-12和CTX-M-14型;AmpC酶的主要基因型为DHA-1,菌株中同时产生多种β-内酰胺酶的较多.  相似文献   
83.
Cryptosporidium and Giardia infections are common causes of diarrhea worldwide. To better understand the transmission of human cryptosporidiosis and giardiasis in Henan, China, 10 Cryptosporidium-positive specimens and 18 Giardia-positive specimens were characterized at the species/genotype and subtype levels. Cryptosporidium specimens were analyzed by DNA sequencing of the small subunit rRNA and 60 kDa glycoprotein genes. Among those genotyped, nine belonged to C. hominis and one C. felis, with the former belonging to three subtype families: Ia, Ib, and Id. The three Ib subtypes identified, IbA16G2, IbA19G2, and IbA20G2, were very different from the two common Ib subtypes (IbA9G3 and IbA10G2) found in other areas of the world. The distribution of Giardia duodenalis genotypes and subtypes was assessed by sequence analysis of the triosephosphate isomerase (tpi) gene. The assemblages A (eight belonging to A-I and four A-II) and B (belonging to six new subtypes) were found in 12 and six specimens, respectively. More systematic studies are needed to understand the transmission of Cryptosporidium and G. duodenalis in humans in China.  相似文献   
84.
We studied the distribution of the D/D, I/D, and I/I genotypes of the angiotensin-converting enzyme (ACE) in a sample of healthy Lebanese individuals to assess their prevalence and compare them with other populations. ACE genotypes were determined using the Cardiovascular Disease (CVD) StripAssay, which is based on a Polymerase Chain Reaction-Reverse hybridization technique. DNA from 133 unrelated healthy donors from our HLA-bank was used. The prevalence of D/D, I/D, and I/I genotypes was found to be 39.1, 45.1, and 15.8% respectively, with D and I allelic frequency of 61.7 and 38.3%, respectively. The sampled Lebanese population showed ACE genotypic distributions similar to Caucasians; however, with tendency towards harboring high D allele frequency together with a low I allele frequency just like the Spanish population. This first report from Lebanon will serve as a baseline statistical data for future investigations of the prevalence of ACE genotypes in association with various clinical entities notably cardiovascular diseases. The medical literature was also reviewed in this context.  相似文献   
85.
Polymorphisms in drug-metabolizing genes may lead to the production of dysfunctional proteins and consequently affect therapeutic efficacy and toxicity of drugs. Different frequencies of polymorphic alleles among the races have been postulated to account for the observed ethnic variations in drug responses. In the current study, we aimed to estimate the frequencies of 14 polymorphisms in eight genes (TPMT, NQO1, MTHFR, GSTP1, CYP1A1, CYP2D6, ABCB1, and SLC19A1) in the Singapore multiracial populations by screening 371 cord blood samples from healthy newborns. To improve genotyping efficacy, we designed an oligonucleotide array based on the principle of allele-specific primer extension (AsPEX) that was capable of detecting the 14 polymorphisms simultaneously. Cross-validation using conventional polymerase chain reaction-restriction fragment-length polymorphism (PCR-RFLP) assays demonstrated 99% concordant results. Measurements on the fluorescent intensity displayed clear distinctions among different genotypes. Statistical analyses showed significantly different allele distributions in several genes among the three races, namely Chinese, Malays, and Indians. Comparing the allelic frequencies in Chinese with previous studies in Caucasian populations, NQO1 609C>T and SLC19A1 80G>A were distinctly different, whereas close similarity was observed for MTHFR 677C>T. We have demonstrated an array-based methodology for rapid multiplex detection of genetic polymorphisms. The allelic frequencies reported in this study may have important therapeutic and prognostic implications in the clinical use of relevant drugs.  相似文献   
86.
Grassland is of major importance for agricultural production and provides valuable ecosystem services. Its impact is likely to rise in changing socio-economic and climatic environments. High yielding forage grass species are major components of sustainable grassland production. Understanding the genome structure and function of grassland species provides opportunities to accelerate crop improvement and thus to mitigate the future challenges of increased feed and food demand, scarcity of natural resources such as water and nutrients, and high product qualities.  相似文献   
87.
Candidemia is an infectious complication mainly affecting hospitalized patients, particularly those admitted to intensive care units. Patient mortality can reach up to 40%. Candidemia is typically nosocomially-acquired, and horizontal transmission of Candida spp. can lead to the presence of outbreaks of candidemia. Genotyping of isolates of Candida causing candidemia can help us to understand the source of the infection, detect the hospital wards with active Candida spp. transmission and, consequently, improve the prevention of the infection. Several genotyping tools have been used for the molecular characterization of Candida isolates involved in outbreaks of candidemia. Genotyping procedures based on microsatellites are reproducible and show a high discriminatory power. Microsatellites are recommended for the study of outbreaks of candidemia. In most hospital outbreaks of candidemia, patients admitted to intensive care units are involved, mostly neonatal patients. The role of genotyping Candida isolates causing candidemia for the study of nosocomial outbreaks of candidemia is reviewed, as well as the patients more commonly affected by epidemic strains.  相似文献   
88.

Background

2b-RAD (type IIB endonucleases restriction-site associated DNA) approach was invented by Wang in 2012 and proven as a simple and flexible method for genome-wide genotyping. However, there is still plenty of room for improvement for the existent 2b-RAD approach. Firstly, it doesn’t include the samples pooling in library preparation as other reduced representation libraries. Secondly, the information of 2b-RAD tags, such as tags numbers and distributions, in most of species are unknown. The purposes of the research are to improve a new 2b-RAD approach which possesses samples pooling, moreover to figure out the characteristic and application potentiality of 2b-RAD tags by bioinformatics analysis.

Results

Twelve adapter1 and an adapter2 were designed. A library approach comprising digestion, ligation, pooling, PCR and size selection were established. For saving costs, we used non-phosphorylated adapters and indexed PCR primers. A F2 population of rice (Oryza sativa .L) was genotyped to validate the new approach. On average, 2000332 high quality reads of each sample were obtained with high evenness. Totally 3598 markers containing 3804 SNPs were discovered and the missing rate was 18.9%. A genetic linkage map of 1385 markers was constructed and 92% of the markers’ orders in the genetic map were in accordance with the orders in chromosomes. Meanwhile, the bioinformatics simulation in 20 species showed that the BsaXI had the most widespread recognition sites, indicating that 2b-RAD tags had a powerful application potentiality for high density genetic map. Using modified adapters with a fix base in 3′end, 2b-RAD was also fit for QTL studies with low costs.

Conclusions

An improved 2b-RAD genotyping approach was established in this research and named as I2b-RAD. The method was a simple, fast, cost-effective and multiplex sequencing library approach. It could be adjusted by selecting different enzymes and adapters to fit for alternative uses including chromosomes assembly, QTL fine mapping and even natural population analysis.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-956) contains supplementary material, which is available to authorized users.  相似文献   
89.

Background

Understanding genetic control of tassel and ear architecture in maize (Zea mays L. ssp. mays) is important due to their relationship with grain yield. High resolution QTL mapping is critical for understanding the underlying molecular basis of phenotypic variation. Advanced populations, such as recombinant inbred lines, have been broadly adopted for QTL mapping; however, construction of large advanced generation crop populations is time-consuming and costly. The rapidly declining cost of genotyping due to recent advances in next-generation sequencing technologies has generated new possibilities for QTL mapping using large early generation populations.

Results

A set of 708 F2 progeny derived from inbreds Chang7-2 and 787 were generated and genotyped by whole genome low-coverage genotyping-by-sequencing method (average 0.04×). A genetic map containing 6,533 bin-markers was constructed based on the parental SNPs and a sliding-window method, spanning a total genetic distance of 1,396 cM. The high quality and accuracy of this map was validated by the identification of two well-studied genes, r1, a qualitative trait locus for color of silk (chromosome 10) and ba1 for tassel branch number (chromosome 3). Three traits of tassel and ear architecture were evaluated in this population, a total of 10 QTL were detected using a permutation-based-significance threshold, seven of which overlapped with reported QTL. Three genes (GRMZM2G316366, GRMZM2G492156 and GRMZM5G805008) encoding MADS-box domain proteins and a BTB/POZ domain protein were located in the small intervals of qTBN5 and qTBN7 (~800 Kb and 1.6 Mb in length, respectively) and may be involved in patterning of tassel architecture. The small physical intervals of most QTL indicate high-resolution mapping is obtainable with this method.

Conclusions

We constructed an ultra-high-dentisy linkage map for the large early generation population in maize. Our study provides an efficient approach for fast detection of quantitative loci responsible for complex trait variation with high accuracy, thus helping to dissect the underlying molecular basis of phenotypic variation and accelerate improvement of crop breeding in a cost-effective fashion.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-433) contains supplementary material, which is available to authorized users.  相似文献   
90.
Predicting likely species responses to an alteration of their local environment is key to decision‐making in resource management, ecosystem restoration and biodiversity conservation practice in the face of global human‐induced habitat disturbance. This is especially true for forest trees which are a dominant life form on Earth and play a central role in supporting diverse communities and structuring a wide range of ecosystems. In Europe, it is expected that most forest tree species will not be able to migrate North fast enough to follow the estimated temperature isocline shift given current predictions for rapid climate warming. In this context, a topical question for forest genetics research is to quantify the ability for tree species to adapt locally to strongly altered environmental conditions (Kremer et al. 2012 ). Identifying environmental factors driving local adaptation is, however, a major challenge for evolutionary biology and ecology in general but is particularly difficult in trees given their large individual and population size and long generation time. Empirical evaluation of local adaptation in trees has traditionally relied on fastidious long‐term common garden experiments (provenance trials) now supplemented by reference genome sequence analysis for a handful of economically valuable species. However, such resources have been lacking for most tree species despite their ecological importance in supporting whole ecosystems. In this issue of Molecular Ecology, De Kort et al. ( 2014 ) provide original and convincing empirical evidence of local adaptation to temperature in black alder, Alnus glutinosa L. Gaertn, a surprisingly understudied keystone species supporting riparian ecosystems. Here, De Kort et al. ( 2014 ) use an innovative empirical approach complementing state‐of‐the‐art landscape genomics analysis of A. glutinosa populations sampled in natura across a regional climate gradient with phenotypic trait assessment in a common garden experiment (Fig. 1 ). By combining the two methods, De Kort et al. ( 2014 ) were able to detect unequivocal association between temperature and phenotypic traits such as leaf size as well as with genetic loci putatively under divergent selection for temperature. The research by De Kort et al. ( 2014 ) provides valuable insight into adaptive response to temperature variation for an ecologically important species and demonstrates the usefulness of an integrated approach for empirical evaluation of local adaptation in nonmodel species (Sork et al. 2013 ).  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号