首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   809篇
  免费   90篇
  国内免费   33篇
  2024年   2篇
  2023年   21篇
  2022年   31篇
  2021年   53篇
  2020年   54篇
  2019年   48篇
  2018年   49篇
  2017年   39篇
  2016年   43篇
  2015年   41篇
  2014年   65篇
  2013年   61篇
  2012年   27篇
  2011年   41篇
  2010年   33篇
  2009年   55篇
  2008年   49篇
  2007年   45篇
  2006年   20篇
  2005年   21篇
  2004年   20篇
  2003年   14篇
  2002年   14篇
  2001年   13篇
  2000年   10篇
  1999年   5篇
  1998年   11篇
  1997年   5篇
  1996年   8篇
  1995年   5篇
  1994年   5篇
  1993年   7篇
  1992年   1篇
  1991年   1篇
  1990年   5篇
  1989年   1篇
  1988年   3篇
  1986年   2篇
  1984年   1篇
  1983年   1篇
  1981年   1篇
  1977年   1篇
排序方式: 共有932条查询结果,搜索用时 15 毫秒
81.
Populations of the Little Bustard Tetrax tetrax in the farmlands of Europe have declined greatly over the last century. In Western Europe, France now holds the only remaining migratory population, which currently numbers fewer than 300 displaying males. However, the movements of these birds are virtually unknown, in spite of the important implications of this information for the conservation of this species. We identified migratory movements and overwintering areas of French migratory populations, using wild individuals fitted with satellite or radio‐transmitters. Little Bustards completed their migration journey over a relatively short time period (2–5 days), with nocturnal migration flights of 400–600 km per night. All birds overwintered in Iberia. In addition, we tested the consequences of captive rearing on migratory movements. French wild adults and French captive‐bred juveniles behaved similarly with regard to migration, suggesting that hand‐raising does not alter migratory movements. However, birds originating from eggs collected in Spain and reared in western France did not migrate, suggesting a genetic component to migratory behaviour. These results therefore suggest that a conservation strategy involving the release in France of birds hatched from eggs collected in Spain may imperil the expression of migratory movements of the French population. More generally, to maintain the integrity of native populations, the introduced individuals should mimic their migratory movements and behaviour.  相似文献   
82.
The NS3 helicase is essential for replication of the hepatitis C virus. This multifunctional Superfamily 2 helicase protein unwinds nucleic acid duplexes in a stepwise, ATP-dependent manner. Although kinetic features of its mechanism are beginning to emerge, little is known about the physical determinants for NS3 translocation along a strand of nucleic acid. For example, it is not known whether NS3 can traverse covalent or physical discontinuities on the tracking strand. Here we provide evidence that NS3 translocates with a mechanism that is different from its well-studied relative, the Vaccinia helicase NPH-II. Like NPH-II, NS3 translocates along the loading strand (the strand bearing the 3'-overhang) and it fails to unwind substrates that contain nicks, or covalent discontinuities in the loading strand. However, unlike NPH-II, NS3 readily unwinds RNA duplexes that contain long stretches of polyglycol, which are moieties that bear no resemblance to nucleic acid. Whether located on the tracking strand, the top strand, or both, long polyglycol regions fail to disrupt the function of NS3. This suggests that NS3 does not require the continuous formation of specific contacts with the ribose-phosphate backbone as it translocates along an RNA duplex, which is an observation consistent with the large NS3 kinetic step size (18 base-pairs). Rather, once NS3 loads onto a substrate, the helicase can translocate along the loading strand of an RNA duplex like a monorail train following a track. Bumps in the track do not significantly disturb NS3 unwinding, but a break in the track de-rails the helicase.  相似文献   
83.
1. Tiger sharks Galeocerdo cuvier are important predators in a variety of nearshore communities, including the seagrass ecosystem of Shark Bay, Western Australia. Because tiger sharks are known to influence spatial distributions of multiple prey species, it is important to understand how they use habitats at a variety of spatial scales. We used a combination of catch rates and acoustic tracking to determine tiger shark microhabitat use in Shark Bay. 2. Comparing habitat-use data from tracking against the null hypothesis of no habitat preference is hindered in Shark Bay, as elsewhere, by the difficulty of defining expected habitat use given random movement. We used randomization procedures to generate expected habitat use in the absence of habitat preference and expected habitat use differences among groups (e.g. males and females). We tested the performance of these protocols using simulated data sets with known habitat preferences. 3. The technique correctly classified sets of simulated tracks as displaying a preference or not and was a conservative test for differences in habitat preferences between subgroups of tracks (e.g. males vs. females). 4. Sharks preferred shallow habitats over deep ones, and preferred shallow edge microhabitats over shallow interior ones. The use of shallow edges likely increases encounter rates with potential prey and may have profound consequences for the dynamics of Shark Bay's seagrass ecosystem through indirect effects transmitted by grazers that are common prey of tiger sharks. 5. Females showed a greater tendency to use shallow edge microhabitats than did males; this pattern was not detected by traditional analysis techniques. 6. The randomization procedures presented here are applicable to many field studies that use tracking by allowing researchers both to determine overall habitat preferences and to identify differences in habitat use between groups within their sample.  相似文献   
84.
The introduced red fox (Vulpes vulpes) now occupies most of the Australian continent outside the tropics, including arid and semiarid ecosystems. Information on the water requirements of foxes is scant, but free water is not thought to be required if adequate moisture‐containing food is available. The frequency and duration of visits by foxes fitted with GPS collars to known artificial watering points in semiarid Australia were recorded for 22 individual foxes across four austral seasons between October 2015 and November 2017, providing >93,000 location fixes. We modeled home range and the distance traveled by range‐resident foxes beyond their home range to reach known water sources. We used recurse analysis to determine the frequency of visitation and step‐selection functions to model the speed and directionality of movement inside and outside the home range. Our study demonstrates that some foxes in this semiarid environment utilize free‐standing water. The findings suggest that artificial watering points can be used as a focal point for conducting strategic fox control in arid and semiarid environments. Additionally, strategies that restrict access to water by foxes may reduce their duration of occupancy and/or long‐term abundance in parts of the landscape, thus providing benefits for conservation and agriculture.  相似文献   
85.
Aims: The host specificity (H‐SPF) and host sensitivity (H‐SNV) values of the sewage‐associated HF183 Bacteroides marker in the current study were compared with the previously published studies in South East Queensland (SEQ), Australia, by testing a large number of wastewater and faecal DNA samples (n = 293) from 11 target and nontarget host groups. This was carried out to obtain information on the consistency in the H‐SPF and H‐SNV values of the HF183 marker for sewage pollution tracking in SEQ. Methods and Results: Polymerase chain reaction (PCR) analysis was used to determine the presence/absence of the HF183 marker in wastewater and faecal DNA samples. Among the human composite wastewater (n = 59) from sewage treatment plants and individual human (n = 20) faecal DNA samples tested, 75 (95%) were PCR positive for the HF183 marker. The overall H‐SNV of this marker in target host group was 0·95 (maximum of 1·00). Among the 214 nontarget animal faecal DNA samples tested, 201 (94%) samples were negative for the HF183 marker. Six chicken, five dog and two bird faecal DNA samples, however, were positive for the marker. The overall H‐SPF of the HF183 marker to differentiate between target and nontarget faecal DNA samples was 0·94 (maximum of 1·00). Conclusions: The H‐SNV (0·95) and H‐SPF (0·94) values obtained in this study was slightly lower than previous studies (H‐SNV value of 1·00 in 2007 and 1·00 in 2009; H‐SPF value of 1·00 in 2007 and 0·99 in 2009). Nonetheless, the overall high H‐SNV (0·98) and H‐SPF (0·97) values of the HF183 marker over the past 4 years (i.e. 2007–2011) suggest that the HF183 marker can be reliably used for the detection of sewage pollution in environmental waters in SEQ. Significance and Impact of the Study: In the current study, the HF183 marker was detected in small number nontarget animal faecal samples. Care should be taken to interpret results obtained from catchments or waterways that might be potentially contaminated with dog faecal matter or poultry litter.  相似文献   
86.
Aims: To determine the genogroup distribution of F‐specific coliphages in aquatic environments using the plaque isolation procedure combined with genogroup‐specific real‐time PCR. Methods and Results: Thirty water samples were collected from a wastewater treatment plant and a river in the Kofu basin in Japan on fine weather days. F‐specific coliphages were detected in all tested samples, 187 (82%) of 227 phage plaques isolated were classified into one of the 4 F‐specific RNA (F‐RNA) coliphage genogroups and 24 (11%) plaques were F‐specific DNA coliphages. Human genogroups II and III F‐RNA coliphages were more abundant in raw sewage than animal genogroups I and IV, excluding one sample that was suspected to be heavily contaminated with sporadic heavy animal faeces. The secondary‐treated sewage samples were highly contaminated with genogroup I F‐RNA coliphages, probably because of different behaviours among the coliphage genogroups during wastewater treatment. The river water samples were expected to be mainly contaminated with human faeces, independent of rainfall effects. Conclusions: A wide range of F‐specific coliphage genogroups were successfully identified in wastewater and river water samples. Significance and Impact of the Study: Our results clearly show the usefulness of the genogroup‐specific real‐time PCR for determining the genogroups of F‐specific coliphages present in aquatic environments.  相似文献   
87.
Guo Y  Su L  Wu J  Zhang D  Zhang X  Zhang G  Li T  Wang J  Liu C 《Cytotechnology》2012,64(4):391-401
Although green fluorescent protein (GFP) labeling is widely accepted as a tracking method, much remains uncertain regarding the retention of injected GFP-labeled cells implanted in ischemic organs. In this study, we evaluate the effectiveness of GFP for identifying and tracking implanted bone marrow- mesenchymal stem cells (BM-MSCs) and the effect of GFP on the paracrine actions of these cells. MSCs isolated from rat femur marrow were transduced with a recombinant adenovirus carrying GFP. After transplantation of the GFP-labeled BM-MSCs into the infarct zone of rat hearts, the survival, distribution, and migration of the labeled cells were analyzed at 3, 7, 14, and 28 days. To evaluate the effect of GFP on the paracrine actions of BM-MSCs, Western blot analysis was performed to detect the expression of vascular endothelial growth factor (VEGF), b fibroblast growth factor (b FGF), tissue inhibitor of metalloproteinase-1 (TIMP-1) and matrix metalloproteinases-2 (MMP-2). GFP was successfully expressed by BM-MSCs in vitro. At 14 days after cell transplantation the GFP-positive cells could not be detected via confocal microscopy. By using a GFP antibody, distinct GFP-positive cells could be seen and quantitative analysis showed that the expression volume of GFP was 6.42 ± 0.92 mm3 after 3 days, 1.24 ± 0.76 mm3 after 7 days, 0.33 ± 0.03 mm3 after 14 days, and 0.09 ± 0.05 mm3 after 28 days. GFP labeling did not adversely affect the paracrine actions of BM-MSCs. GFP labeling could be used to track MSC distribution and their fate for at least 28 days after delivery to rat hearts with myocardial infarction, and this stem cell tracking strategy did not adversely affect the paracrine actions of BM-MSCs.  相似文献   
88.
Endogenous electric fields (EFs) occur naturally in vivo and play a critical role during tissue/organ development and regeneration, including that of the central nervous system1,2. These endogenous EFs are generated by cellular regulation of ionic transport combined with the electrical resistance of cells and tissues. It has been reported that applied EF treatment can promote functional repair of spinal cord injuries in animals and humans3,4. In particular, EF-directed cell migration has been demonstrated in a wide variety of cell types5,6, including neural progenitor cells (NPCs)7,8. Application of direct current (DC) EFs is not a commonly available technique in most laboratories. We have described detailed protocols for the application of DC EFs to cell and tissue cultures previously5,11. Here we present a video demonstration of standard methods based on a calculated field strength to set up 2D and 3D environments for NPCs, and to investigate cellular responses to EF stimulation in both single cell growth conditions in 2D, and the organotypic spinal cord slice in 3D. The spinal cordslice is an ideal recipient tissue for studying NPC ex vivo behaviours, post-transplantation, because the cytoarchitectonic tissue organization is well preserved within these cultures9,10. Additionally, this ex vivo model also allows procedures that are not technically feasible to track cells in vivo using time-lapse recording at the single cell level. It is critically essential to evaluate cell behaviours in not only a 2D environment, but also in a 3D organotypic condition which mimicks the in vivo environment. This system will allow high-resolution imaging using cover glass-based dishes in tissue or organ culture with 3D tracking of single cell migration in vitro and ex vivo and can be an intermediate step before moving onto in vivo paradigms.  相似文献   
89.
Eye movements are very important in order to track an object or to stabilize an image on the retina during movement. Animals without a fovea, such as the mouse, have a limited capacity to lock their eyes onto a target. In contrast to these target directed eye movements, compensatory ocular eye movements are easily elicited in afoveate animals1,2,3,4. Compensatory ocular movements are generated by processing vestibular and optokinetic information into a command signal that will drive the eye muscles. The processing of the vestibular and optokinetic information can be investigated separately and together, allowing the specification of a deficit in the oculomotor system. The oculomotor system can be tested by evoking an optokinetic reflex (OKR), vestibulo-ocular reflex (VOR) or a visually-enhanced vestibulo-ocular reflex (VVOR). The OKR is a reflex movement that compensates for "full-field" image movements on the retina, whereas the VOR is a reflex eye movement that compensates head movements. The VVOR is a reflex eye movement that uses both vestibular as well as optokinetic information to make the appropriate compensation. The cerebellum monitors and is able to adjust these compensatory eye movements. Therefore, oculography is a very powerful tool to investigate brain-behavior relationship under normal as well as under pathological conditions (f.e. of vestibular, ocular and/or cerebellar origin).Testing the oculomotor system, as a behavioral paradigm, is interesting for several reasons. First, the oculomotor system is a well understood neural system5. Second, the oculomotor system is relative simple6; the amount of possible eye movement is limited by its ball-in-socket architecture ("single joint") and the three pairs of extra-ocular muscles7. Third, the behavioral output and sensory input can easily be measured, which makes this a highly accessible system for quantitative analysis8. Many behavioral tests lack this high level of quantitative power. And finally, both performance as well as plasticity of the oculomotor system can be tested, allowing research on learning and memory processes9.Genetically modified mice are nowadays widely available and they form an important source for the exploration of brain functions at various levels10. In addition, they can be used as models to mimic human diseases. Applying oculography on normal, pharmacologically-treated or genetically modified mice is a powerful research tool to explore the underlying physiology of motor behaviors under normal and pathological conditions. Here, we describe how to measure video-oculography in mice8.  相似文献   
90.
夏中荣  古河祥 《四川动物》2012,31(3):435-438,513
自2001年来,惠东港口海龟国家级自然保护区已成功地利用卫星追踪了21只海龟的洄游路线。本文利用美国卫星信号发射器(Tag)和法国Argos系统追踪3只成年雌性绿海龟。跟踪海龟"西沙"和"南沙"26d,二者均在海口市附近海域消失;"东沙"从阳江市海陵岛出发,取东南向至菲律宾,然后沿菲律宾西海岸向南,最后在巴拉望岛西侧海域逗留,共追踪111d。该试验说明港口海龟具有不同的洄游线路,偏爱沿岸的浅海洄游;洄游路线与等温线之间无显著关系;海龟洄游具有明确的目的地。建议政府相关部门采取科学策略来保护海龟。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号