首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2895篇
  免费   168篇
  国内免费   221篇
  2023年   21篇
  2022年   31篇
  2021年   32篇
  2020年   48篇
  2019年   68篇
  2018年   52篇
  2017年   86篇
  2016年   98篇
  2015年   81篇
  2014年   121篇
  2013年   152篇
  2012年   79篇
  2011年   158篇
  2010年   76篇
  2009年   176篇
  2008年   169篇
  2007年   163篇
  2006年   151篇
  2005年   151篇
  2004年   139篇
  2003年   100篇
  2002年   81篇
  2001年   44篇
  2000年   73篇
  1999年   72篇
  1998年   73篇
  1997年   49篇
  1996年   69篇
  1995年   67篇
  1994年   57篇
  1993年   50篇
  1992年   44篇
  1991年   47篇
  1990年   43篇
  1989年   44篇
  1988年   43篇
  1987年   28篇
  1986年   32篇
  1985年   33篇
  1984年   36篇
  1983年   18篇
  1982年   29篇
  1981年   16篇
  1980年   16篇
  1979年   14篇
  1978年   10篇
  1977年   7篇
  1975年   7篇
  1974年   7篇
  1973年   10篇
排序方式: 共有3284条查询结果,搜索用时 330 毫秒
51.
Tryptophan is the only amino acid in the circulation that is bound by albumin, and previous studies have suggested that the brain tryptophan supply is a function of either the free or the albumin-bound pool of tryptophan in blood. Since the albumin molecule per se does not cross the brain capillary wall, i.e., the blood-brain barrier (BBB), the transport of tryptophan from the circulating albumin-bound pool may involve enhanced dissociation of tryptophan from the albumin binding sites within the cerebral microcirculation. This hypothesis was confirmed in the present studies wherein the dissociation constant (KaD) of albumin binding of tryptophan in the rat or rabbit brain microcirculation was measured in vivo. Brain extraction data for [14C]tryptophan determined with the carotid artery injection technique were fit to the Kety-Renkin-Crone equation modified for protein-bound solute. The KaD of albumin binding in the rat or rabbit brain microcirculation under pentobarbital anesthesia was 1.7 +/- 0.1 and 3.9 +/- 1.0 mM, respectively, as compared to the KD value measured in vitro with equilibrium dialysis, 0.13 +/- 0.03 mM. In contrast, the KaD value of albumin binding of tryptophan in vivo in the rabbit brain microcirculation was reduced by ether anesthesia to a value of 2.1 +/- 0.4 mM. This reduction in the KaD under ether anesthesia was associated with a 2.5-fold increase in cerebral blood flow. In addition, dialyzed rabbit serum caused a statistically significant inhibition in [14C]tryptophan influx during ether, but not pentobarbital, anesthesia.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   
52.
斑叶竹节秋海棠微繁殖的研究   总被引:1,自引:0,他引:1  
  相似文献   
53.
Short-term measurements of instantaneous carbon-isotope discrimination have been determined from mass-spectrometric analyses of CO2 collected online during gas exchange for the epiphytic bromeliad Tillandsia utriculata L. Using this technique, the isotopic signature of CO2 exchange for each phase of Crassulacean acid metabolism (CAM) has been characterised. During night-time fixation of CO2 (Phase I), discrimination () ranged from 4.4 to 6.6, equivalent to an effective carbon-isotope ratio (13C) of –12.3 to –14.5 versus Pee Dee Belemnite (PDB). These values reflected the gross photosynthetic balance between net CO2 uptake and refixation of respiratory CO2, characteristic of CAM in the Bromeliaceae. When for the relative proportion of external (p a ) and internal (p i) CO2 is taken into account, calculated p i/p a decreased during the later part of the dark period from 0.68 to 0.48. Measurements of during Phase II, early in the light period, showed the transition between C4 and C3 pathways, with carboxylation being increasingly dominated by ribulose bisphosphate carboxylase (Rubisco) as increased from 10.5 to 21.2 During decarboxylation in the light period (Phase III), CO2 leaked out of the leaf and the inherent discrimination of Rubisco was expressed. The value of calculated from on-line measurements (64.4) showed that the CO2 lost was considerably enriched in 13C, and this was confirmed by direct analysis of the CO2 diffusing out into a CO2-free atmosphere ( 13C = + 51.6 versus PDB). Instantaneous discrimination was characteristic of the C3 pathway during Phase IV (late in the light period), but a reduction in showed an increasing contribution from phosphoenolpyruvate carboxylase. The results from this non-invasive technique confirm the observations that double carboxylation involving both phosphoenolpyruvate carboxylase and Rubisco occurs during the transient phases of CAM (II and IV) in the light period.Abbreviations and Symbols CAM Crassulacean acid metabolism - H+ (dawn-dusk) variation in titratable acidity - 13C carbonisotope ratio of plant organic material, relative to Pee Dee Belemnite (vs. PDB) - discrimination against 13CO2, - p i, p a internal, external partial pressures of CO2 - Rubisco ribulose1,5-bisphosphate carboxylase - PAR photosynthetically active radiation - PEPCase phosphoenolpyruvate carboxylase We are grateful for financial support in respect of research grants (GR3/5360, GR3/6419) and a studentship awarded by the Natural Environment Research Council, UK.  相似文献   
54.
核苷酸和烟酸的添加,使紫云英根瘤菌109氢酶吸氢活性表达增加。cAMP(1 mmol/L),烟酸(70 mmol/L)的存在,缓解了葡萄糖酸钠或果糖引起的吸氢活性阻遏,cAMP的解阻遏效应在年轻的菌体(48 h)表现较为明显。但以MB为受体的破碎细胞吸氢活性则未见增加,烟酸的促进效应受到氯霉素(40μg/ml)的抑制。其他核苷或核苷酸,如腺嘌呤,尿嘧啶,ATP,ADP,AMP,UMP,UTP都能促进吸氢活性的表达。诱导氢酶前,细胞ATP库已处于低水平,并保持稳定,添加琥珀酸盐后,ATP库水平提高,吸氢活性表达受抑。  相似文献   
55.
Effects of above-ground herbivory on short-term plant carbon allocation were studied using maize (Zea mays) and a generalist lubber grasshopper (Romalea guttata). We hypothesized that above-ground herbivory stimulates current net carbon assimilate allocation to below-ground components, such as roots, root exudation and root and soil respiration. Maize plants 24 days old were grazed (c. 25–50% leaf area removed) by caging grasshoppers around individual plants and 18 h later pulse-labelled with14CO2. During the next 8 h,14C assimilates were traced to shoots, roots, root plus soil respiration, root exudates, rhizosphere soil, and bulk soil using carbon-14 techniques. Significant positive relationships were observed between herbivory and carbon allocated to roots, root exudates, and root and soil respiration, and a significant negative relationship between herbivory and carbon allocated to shoots. No relationship was observed between herbivory and14C recovered from soil. While herbivory increased root and soil respiration, the peak time for14CO2 evolved as respiration was not altered, thereby suggesting that herbivory only increases the magnitude of respiration, not patterns of translocation through time. Although there was a trend for lower photosynthetic rates of grazed plants than photosynthetic rates of ungrazed plants, no significant differences were observed among grazed and ungrazed plants. We conclude that above-ground herbivory can increase plant carbon fluxes below ground (roots, root exudates, and rhizosphere respiration), thus increasing resources (e.g., root exudates) available to soil organisms, especially microbial populations.  相似文献   
56.
Bacillus megaterium shows diauxic growth in minimal medium containing glucose and xylose. We have examined the influence of three elements that regulatexyl operon expression on diauxic growth and expression of axylA-lacZ fusion.xylA is 13-fold repressed during growth on glucose. Induction occurs at the onset of the lag phase after glucose is consumed. Inactivation ofxylR yields a two-fold increase in expression ofxylA on glucose. Deletion of the catabolite responsive element (cre) has a more pronounced effect, reducing glucose repression from 13-fold in the wild type to about 2.5-fold. WhenxylR andcre are inactivated together a residual two-fold repression ofxylA is found. Inactivation ofxylR affects diauxic growth by shortening the lag phase from 70 to 40 min. In-frame deletion ofccpA results in the loss of diauxic growth, an increase in doubling time and simultaneous use of both sugars. In contrast, a strain with an inactivatedcre site inxylA exhibits diauxic growth without an apparent lag phase on glucose and xylose, whereas fructose and xylose are consumed simultaneously.  相似文献   
57.
 To determine whether stable isotopes can be used for identifying the geographic origins of migratory bird populations, we examined the isotopic composition of hydrogen (deuterium, δD), carbon (δ13C), and strontium (δ87Sr) in tissues of a migratory passerine, the black-throated blue warbler (Dendroica caerulescens), throughout its breeding range in eastern North America. δD and δ13C values in feathers, which are grown in the breeding area, varied systematically along a latitudinal gradient, being highest in samples from the southern end of the species’ breeding range in Georgia and lowest in southern Canada. In addition, δD decreased from east to west across the northern part of the breeding range, from New Brunswick to Michigan. δ87Sr ratios were highest in the Appalachian Mountains, and decreased towards the west. These patterns are consistent with geographical variation in the isotopic composition of the natural environment, i.e., with that of precipitation, plants, and soils for δD, δ13C, and δ87Sr, respectively. Preliminary analyses of the δD and δ13C composition of feathers collected from warblers in their Caribbean winter grounds indicate that these individuals were mostly from northern breeding populations. Furthermore, variances in isotope ratios in samples from local areas in winter tended to be larger than those in summer, suggesting that individuals from different breeding localities may mix in winter habitats. These isotope markers, therefore, have the potential for locating the breeding origins of migratory species on their winter areas, for quantifying the degree of mixing of breeding populations on migratory and wintering sites, and for documenting other aspects of the population structure migratory animals – information needed for studies of year-round ecology of these species as well as for their conservation. Combining information from several stable isotopes will help to increase the resolution for determining the geographic origins of individuals in such highly vagile populations. Received: 24 April 1995 / Accepted: 2 June 1996  相似文献   
58.
Abstract A 1.5-kb XbaI-SacII fragment containing the upstream region of the Trichoderma reesei cellobiohydrolase I gene ( cbh1 ) has been sequenced. The 1.5-kb fragment contains eight 6-bp sites having an identical or similar sequence to the consensus sequence for binding a catabolite repressor, Aspergillus nidulans CreA. Results of binding assays with the maltose-binding protein: :Cre1(10–131) fusion protein (Cre1 is a catabolite repressor of T. reesei ) and the cbhI upstream region revealed that a 504-bp XbaI-NspV fragment (nucleotide position − 1496 to − 993) bearing three 6-bp sites, Al, A2, and A3, and a 356-bp NspV-MunI fragment (nucleotide position −994 to −639) bearing three 6-bp sites, B1, B2, and B3, were shifted in the electrophoretic mobility shift assay. DNase I footprinting experiments showed that the 6-bp sites A2, B1, B2, and B3 were protected from DNase I digestion.  相似文献   
59.
Abstract Threonine and lysine are two of the economically most important essential amino acids. They are produced industrially by species of the genera Corynebacterium and Brevibacterium . The branched biosynthetic pathway of these amino acids in corynebacteria is unusual in gene organization and in the control of key enzymatic steps with respect to other microorganisms. This article reviews the molecular control mechanisms of the biosynthetic pathways leading to threonine and lysine in corynebacteria, and their implications in the production of these amino acids. Carbon flux can be redirected at branch points by gene disruption of the competing pathways for lysine or threonine. Removal of bottlenecks has been achieved by amplification of genes which encode feedback resistant aspartokinase and homoserine dehydrogenase (obtained by in vitro directed mutagenesis).  相似文献   
60.
We studied the effects of atmospheric CO2 enrichment (280, 420 and 560 l CO2 l–1) and increased N deposition (0,30 and 90 kg ha–1 year–1) on the spruce-forest understory species Oxalis acetosella, Homogyne alpina and Rubus hirtus. Clones of these species formed the ground cover in nine 0.7 m2 model ecosystems with 5-year-old Picea abies trees (leaf area index of approx 2.2). Communities grew on natural forest soil in a simulated montane climate. Independently of N deposition, the rate of light-saturated net photosynthesis of leaves grown and measured at 420 l CO2 l–1 was higher in Oxalis and in Homogyne, but was not significantly different in Rubus compared to leaves grown and measured at the pre-industrial CO2 concentration of 280 l l–1. Remarkably, further CO2 enrichment to 560 l l–1 caused no additional increase of CO2 uptake. With increasing CO2 supply concentrations of non-structural carbohydrates in leaves increased and N concentrations decreased in all species, whereas N deposition had no significant effect on these traits. Above-ground biomass and leaf area production were not significantly affected by elevated CO2 in the more vigorously growing species O. acetosella and R. hirtus, but the slow growing H. alpina produced almost twice as much biomass and 50% more leaf area per plant under 420 l CO2 l–1 compared to 280 l l–1 (again no further stimulation at 560 l l–1). In contrast, increased N addition stimulated growth in Oxalis and Rubus but had no effect on Homogyne. In Oxalis (only) biomass per plant was positively correlated with microhabitat quantum flux density at low CO2, but not at high CO2 indicating carbon saturation. On the other hand, the less shade-tolerant Homogyne profited from CO2 enrichment at all understory light levels facilitating its spread into more shady micro-habitats under elevated CO2. These species-specific responses to CO2 and N deposition will affect community structure. The non-linear responses to elevated CO2 of several of the traits studied here suggest that the largest responses to rising atmospheric CO2 are under way now or have already occurred and possible future responses to further increases in CO2 concentration are likely to be much smaller in these understory species.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号