首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2459篇
  免费   84篇
  国内免费   59篇
  2023年   10篇
  2022年   15篇
  2021年   33篇
  2020年   24篇
  2019年   40篇
  2018年   30篇
  2017年   34篇
  2016年   29篇
  2015年   60篇
  2014年   123篇
  2013年   114篇
  2012年   107篇
  2011年   113篇
  2010年   85篇
  2009年   84篇
  2008年   73篇
  2007年   107篇
  2006年   88篇
  2005年   82篇
  2004年   76篇
  2003年   79篇
  2002年   76篇
  2001年   56篇
  2000年   50篇
  1999年   60篇
  1998年   51篇
  1997年   45篇
  1996年   50篇
  1995年   68篇
  1994年   54篇
  1993年   26篇
  1992年   60篇
  1991年   45篇
  1990年   40篇
  1989年   44篇
  1988年   47篇
  1987年   38篇
  1986年   28篇
  1985年   25篇
  1984年   54篇
  1983年   49篇
  1982年   57篇
  1981年   49篇
  1980年   31篇
  1979年   33篇
  1978年   14篇
  1977年   21篇
  1976年   4篇
  1974年   6篇
  1973年   5篇
排序方式: 共有2602条查询结果,搜索用时 609 毫秒
131.
132.
SYNOPSIS. The biochemical effects of some detergents on the ATPase activity of isolated flagella from Euglena gracilis are related to morphologic obliterations induced by those detergents. Enzymic activity can be localized by electron microscopy along the microtubules and also on the paraflagellar rod. The nonionic detergent digitonin solubilizes the enzyme linked to dyneinic arms, whereas the activity linked to residual structures appears enhanced. These results support the hypothesis that the paraflagellar rod may be a structure actively related to the motility of this type of flagellum.  相似文献   
133.
134.
After undergoing massive RNA and protein rearrangements during assembly, the spliceosome undergoes a final, more subtle, ATP-dependent rearrangement that is essential for catalysis. This rearrangement requires the DEAH-box protein Prp2p, an RNA-dependent ATPase. Prp2p has been implicated in destabilizing interactions between the spliceosome and the protein complexes SF3 and RES, but a role for Prp2p in destabilizing RNA–RNA interactions has not been explored. Using directed molecular genetics in budding yeast, we have found that a cold-sensitive prp2 mutation is suppressed not only by mutations in SF3 and RES components but also by a range of mutations that disrupt the spliceosomal catalytic core element U2/U6 helix I, which is implicated in juxtaposing the 5′ splice site and branch site and in positioning metal ions for catalysis within the context of a putative catalytic triplex; indeed, mutations in this putative catalytic triplex also suppressed a prp2 mutation. Remarkably, we also found that prp2 mutations rescue lethal mutations in U2/U6 helix I. These data provide evidence that RNA elements that comprise the catalytic core are already formed at the Prp2p stage and that Prp2p destabilizes these elements, directly or indirectly, both to proofread spliceosome activation and to promote reconfiguration of the spliceosome to a fully competent, catalytic conformation.  相似文献   
135.
Abstract In this study, the recognition contour of Chemosensor 1 was investigated using semiaqueous methanol (XH, mole fraction = 0.31) for a range of anions and bioactive species. Host–receptor signalling based on the internal charge transfer mechanism for Chemosensor 1 was explored and reported. Structure of Chemosensor 1 and its plausible anion coordination based on hydrogen bonding is complemented with density functional theory. Consequently, we investigated the applicability of the synthesized probe in blood plasma, urine, tap water samples, and for monitoring of ATP in lysosomes by apyrase enzyme.  相似文献   
136.
137.
Pieces of mammalian nerves 1 to 2 cm. long were placed under moderate tension and fixed 24–48 hours in: picric acid, saturated aqueous, 90 ml.; formalin, 10 ml.; and trichloracetic acid, 25% aqueous, 2 ml. They were washed in water, cut in two and one end stained with 0.04–0.06% osmic acid solution, while the other was dehydrated, embedded in paraffin, and mounted sections from it stained with protargol. The fixing solution used was selected from a number of combinations of acidified picro-formalin as the one most likely to give satisfactory results when followed by both silver and osmic acid. The use of osmic acid solutions of less than 0.1% concentration avoided the overstaining of myelin sheaths seen frequently when stronger solutions were used with material that had been fixed previously. Protargol, 0.5% solution with fast green FCF added to make 0.05% dye in the final concentration, was used to impregnate sections for axis cylinders. Reduction and toning were done as in Bodian's method.  相似文献   
138.
Pulmonary surfactant is essential for life and is composed of a complex lipoprotein-like mixture that lines the inner surface of the lung to prevent alveolar collapse at the end of expiration. The molecular composition of surfactant depends on highly integrated and regulated processes involving its biosynthesis, remodeling, degradation, and intracellular trafficking. Despite its multicomponent composition, the study of surfactant phospholipid metabolism has focused on two predominant components, disaturated phosphatidylcholine that confers surface-tension lowering activities, and phosphatidylglycerol, recently implicated in innate immune defense. Future studies providing a better understanding of the molecular control and physiological relevance of minor surfactant lipid components are needed. This article is part of a Special Issue entitled Phospholipids and Phospholipid Metabolism.  相似文献   
139.
The PIF1 helicase family performs many cellular functions. To better understand the functions of the human PIF1 helicase, we characterized the biochemical properties of its ATPase. PIF1 is very sensitive to temperature, whereas it is not affected by pH, and the ATPase activity of human PIF1 is dependent on the divalent cations Mg2+ and Mn2+ but not Ca2+ and Zn2+. Inhibition was observed when single-stranded DNA was coated with RPA or SSB. Moreover, the ATPase activity of PIF1 proportionally decreased with decreasing oligonucleotide length due to a decreased binding ability. A minimum of 10 oligonucleotide bases are required for PIF1 binding and the hydrolysis of ATP. The analysis of the biochemical properties of PIF1 together with numerous genetic observations should aid in the understanding of its cellular functions.  相似文献   
140.
The kinesin-3 family contains the fastest and most processive motors of the three neuronal transport kinesin families, yet the sequence of states and rates of kinetic transitions that comprise the chemomechanical cycle and give rise to their unique properties are poorly understood. We used stopped-flow fluorescence spectroscopy and single-molecule motility assays to delineate the chemomechanical cycle of the kinesin-3, KIF1A. Our bacterially expressed KIF1A construct, dimerized via a kinesin-1 coiled-coil, exhibits fast velocity and superprocessivity behavior similar to WT KIF1A. We established that the KIF1A forward step is triggered by hydrolysis of ATP and not by ATP binding, meaning that KIF1A follows the same chemomechanical cycle as established for kinesin-1 and -2. The ATP-triggered half-site release rate of KIF1A was similar to the stepping rate, indicating that during stepping, rear-head detachment is an order of magnitude faster than in kinesin-1 and kinesin-2. Thus, KIF1A spends the majority of its hydrolysis cycle in a one-head-bound state. Both the ADP off-rate and the ATP on-rate at physiological ATP concentration were fast, eliminating these steps as possible rate-limiting transitions. Based on the measured run length and the relatively slow off-rate in ADP, we conclude that attachment of the tethered head is the rate-limiting transition in the KIF1A stepping cycle. Thus, KIF1A''s activity can be explained by a fast rear-head detachment rate, a rate-limiting step of tethered-head attachment that follows ATP hydrolysis, and a relatively strong electrostatic interaction with the microtubule in the weakly bound post-hydrolysis state.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号