首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2519篇
  免费   235篇
  国内免费   877篇
  2024年   23篇
  2023年   108篇
  2022年   109篇
  2021年   95篇
  2020年   96篇
  2019年   96篇
  2018年   69篇
  2017年   80篇
  2016年   84篇
  2015年   124篇
  2014年   169篇
  2013年   136篇
  2012年   145篇
  2011年   180篇
  2010年   153篇
  2009年   135篇
  2008年   224篇
  2007年   136篇
  2006年   130篇
  2005年   143篇
  2004年   121篇
  2003年   136篇
  2002年   135篇
  2001年   117篇
  2000年   96篇
  1999年   79篇
  1998年   56篇
  1997年   69篇
  1996年   50篇
  1995年   42篇
  1994年   59篇
  1993年   41篇
  1992年   50篇
  1991年   45篇
  1990年   31篇
  1989年   28篇
  1988年   9篇
  1987年   6篇
  1986年   6篇
  1985年   8篇
  1984年   5篇
  1983年   3篇
  1982年   1篇
  1960年   1篇
  1956年   1篇
  1950年   1篇
排序方式: 共有3631条查询结果,搜索用时 406 毫秒
81.
本文用~(125)Ⅰ标记LC-1进行了一些体内外实验。实验结果表明:LC-1单抗的结合常数为4.8×10~8M~(-1),LC-1针对的SPC-A_1细胞表面抗原的位点数为7.2×10~4/细胞;LC-1与LAC-122两单抗针对的抗原决定簇没有交叉;用蛋白酶和过碘酸钠处理SPC-A_1细胞,前者对LC-1的结合抑制39%,后者抑制66%;LC- 1不但有较强的体外结合靶细胞的能力,从LC-1在荷瘤裸鼠中的组织器官分布来看,LC-1与肿瘤有较高的体内亲和性,并且是特异性的结合。  相似文献   
82.
83.
目的:探究ZLA对神经元型AChE的抑制活性及其对中枢胆碱能神经功能障碍导致的学习记忆功能减退的改善作用。方法:通过体外实验观察ZLA对神经元型AChE活性的影响;通过ex vivo实验观察ZLA体内AChE抑制活性;利用Morris水迷宫行为学实验探讨ZLA对东莨菪碱诱发的小鼠学习记忆功能障碍的改善作用。结果:ZLA明显抑制人SH-SY5Y神经元细胞和小鼠海马神经元来源的AChE活性。另外,ZLA腹腔注射后以剂量依赖性方式抑制小鼠脑内AChE活性。Morris水迷宫实验结果显示,ZLA显著改善东莨菪碱引起的学习和记忆功能障碍。结论:ZLA能够抑制神经元型AChE活性并具有促智作用。  相似文献   
84.
目的:探讨不同纤维桩表面处理方式对牙根修复后抗折裂强度的影响。方法:收集行正畸拔除的前磨牙120颗作为本研究样本,随机将120个纤维桩分为对照组、喷砂组和过氧化氢酸蚀组,每组40例。对照组纤维桩表明不给予任何处理,喷砂组给予氧化铝砂粒持续喷砂粗化处理,过氧化氢酸蚀组给予10%过氧化氢溶液处理,均包埋于纤维桩道预备好的离体牙内,采用相同树脂制备成核,行全冠修复与黏固,再模拟口腔内部环境给予样本牙冷热循环处理,经相同环境加载后,置于电子万能实验机获取样本牙抗折裂强度数据。对比三组离体牙样本体型数据、离体牙断裂方式、抗折裂强度,对三组进行为期24个月的定期随访,统计三组修复体断裂率,并采用Kaplan-Meier曲线和Log Rank法分析三组的生存状况。结果:三组的离体牙样本关于牙齿长度、牙根长度、颈部颊舌径及颈部近远中径对比差异无统计学意义(P0.05);喷砂组和过氧化氢酸蚀组的离体牙抗折裂强度显著强于对照组(P0.05);喷砂组和过氧化氢酸蚀组的牙齿折裂总发生率分别为20.00%和22.50%,均显著低于对照组的70.00%(P0.05)。但两组间比较差异无统计学意义(P0.05)。喷砂组、过氧化氢酸蚀组的生存状况显著优于对照组。结论:前磨牙修复过程中,对纤维桩表面进行喷砂或过氧化氢酸蚀处理均能提高牙根修复后抗折裂强度,改善修复体修复效果生存状况,且两种纤维桩表面处理方式对离体牙样本的断裂方式和抗折裂强度影响相当。  相似文献   
85.
86.
Nrf2可调节多种抗氧化酶的表达,Nrf2的缺失可能影响机体的运动能力,而低氧可提高机体的抗氧化能力并改善运动能力。为了考察低氧运动对Nrf2基因敲除大鼠运动能力和氧化应激的影响,本研究分别在常氧和低氧环境(12%氧浓度)中对野生型大鼠和Nrf2敲除大鼠进行4周的跑台运动。研究显示,低氧运动可提高野生型大鼠的跑台运动力竭时间,Nrf2敲除可缩短大鼠的力竭时间;低氧运动可上调大鼠的Nrf2 m RNA表达量;Nrf2敲除明显抑制HIF-1α蛋白表达,而低氧运动可上调野生型和Nrf2敲除大鼠的HIF-1α蛋白表达;Nrf2敲除大鼠的骨骼肌ROS水平明显升高,并且低氧均可降低野生型和Nrf2敲除大鼠骨骼肌ROS水平。低氧运动可上调Nrf2敲除大鼠的CAT和GSH-PX蛋白表达。苏木精和伊红(HE)染色显示,Nrf2敲除大鼠在力竭跑台运动完成后出现更严重的骨骼肌病理改变,而低氧运动可减轻骨骼肌损伤。本研究认为,Nrf2敲除导致了大鼠骨骼肌中抗氧化酶的抑制及ROS的过量累积,从而造成了骨骼肌损伤并降低了运动能力。此外,低氧可通过上调Nrf2的表达,进而激活HIF-1α及抗氧化酶活性,从而提高运动能力,并防止骨骼肌损伤。  相似文献   
87.
为鉴定不同抗性苹果(Malus domestica)品种响应轮纹病菌胁迫的抗性相关蛋白表达差异, 以抗病品种华月及易感品种金冠为试材, 采用高通量同位素标记定量(IBT)技术结合液相色谱-串联质谱(LC-MS)鉴定技术, 对病原菌处理前后抗、感病品种叶片的蛋白质组差异表达进行分析, 共鉴定出171个差异表达蛋白(DEPs)。GO富集及KEGG通路分析表明, 在细胞组分、分子功能和生物过程3类中共注释到686个GO条目, 其中52个DEPs注释于KEGG通路的18个显著差异途径(P<0.05)。亚细胞定位预测分析表明, 171个DEPs中有170个分别定位于8类细胞器。蛋白功能注释分析表明, 46个DEPs注释于7类抗性相关蛋白, 包括类甜蛋白、过氧化物酶、多酚氧化酶、过敏原蛋白、几丁质酶、内切葡聚糖酶以及主乳胶蛋白。此外, 还对抗性相关蛋白的表达特点及基因定量结果进行了分析。该研究结果可为进一步解析抗、感病苹果品种应答轮纹病菌胁迫的抗性机制提供参考。  相似文献   
88.
以生菜(Lactuca sativa)种子为研究对象,通过不同时间的吸水处理分析其含水量变化,再通过程序降温处理,分析不同含水量种子发芽率的差异,以及脂肪酸合成有关基因(FAD2、FAD3、PPT、ELOVL)和冷调节基因ICE1的表达。结果表明,种子含水量随吸水时间增加而升高。程序降温至同样的低温冷冻条件下(-20℃、-22℃),吸水时间小于6 h的种子发芽率较高,而吸水8 h以上的种子发芽率显著降低。种子吸水8 h含水量处于饱和状态,在此状态下种子对低温较为敏感,说明含水量对种子耐冻性有影响。冷冻处理后生菜种子基因表达检测结果表明,脂肪酸去饱和酶基因(FAD2、FAD3)、蛋白质棕榈酰基硫脂酶相关基因(PPT)、长链脂肪酸延伸酶相关基因(ELOVL)的表达水平均随着种子含水量增加呈上升趋势,吸胀10 h的种子表达量最高,此时种子由于高含水量所受冷冻伤害最大。基因ICE1在冷冻处理种子中的表达也随着吸水时间增加而升高,在吸水10 h时种子中表达量到最高水平。综上,种子含水量越高,所受冷冻伤害越大。但种子在低温条件下具有一定的抗冷反应,可通过相关基因的过表达调控合成更多不饱和脂肪酸、抗冻蛋白等提高含水种子耐冻性。  相似文献   
89.
干旱区植物的水分利用效率对植物的分布及水分利用状况具有重要意义。基于不同地下水埋深条件下沙漠腹地绿洲优势种胡杨和柽柳叶片δ13C值,分析了胡杨和柽柳的水分利用效率对不同地下水埋深的响应。结果表明: 随着地下水埋深由2.1 m增加到4.3 m,柽柳叶片的δ13C值先略有增加后处于较为稳定状态,柽柳采取较为稳定的水分利用效率适应干旱环境;胡杨叶片的δ13C值呈现先略有减小后增加的趋势,胡杨通过提高水分利用效率的策略适应干旱胁迫。同一地下水埋深条件下柽柳叶片的δ13C值高于胡杨叶片,表明柽柳的水分利用效率高于胡杨。  相似文献   
90.
将组织工程的思想与方法应用于人工心脏瓣膜领域有望克服现有瓣膜的不足,具有良好的应用前景。然而,实现组织工程心脏瓣膜仍然存在许多挑战。该文介绍了组织工程瓣膜的定义及发展,讨论了常用的组织工程瓣膜的材料学研究与制备方法、调控瓣膜再细胞化的手段以及相应的挑战。基于细胞支架、种子细胞、生物活性因子三要素制备的组织工程瓣膜目前大多仅处于基础研究阶段。更具应用推广价值的组织工程瓣膜研究方向是基于异种心包膜或瓣叶交联的组织工程瓣膜,包括提高交联的生物瓣膜的抗钙化性能,制备脱离不良溶剂保存的可预装干燥瓣膜,以及探索新型的生物瓣膜交联方式。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号