首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   20066篇
  免费   1603篇
  国内免费   4288篇
  2024年   62篇
  2023年   737篇
  2022年   871篇
  2021年   1368篇
  2020年   1189篇
  2019年   1011篇
  2018年   994篇
  2017年   986篇
  2016年   976篇
  2015年   1294篇
  2014年   1913篇
  2013年   1729篇
  2012年   1932篇
  2011年   1806篇
  2010年   1394篇
  2009年   1313篇
  2008年   863篇
  2007年   1015篇
  2006年   882篇
  2005年   562篇
  2004年   406篇
  2003年   348篇
  2002年   247篇
  2001年   285篇
  2000年   211篇
  1999年   235篇
  1998年   135篇
  1997年   150篇
  1996年   171篇
  1995年   120篇
  1994年   95篇
  1993年   130篇
  1992年   100篇
  1991年   99篇
  1990年   87篇
  1989年   63篇
  1988年   94篇
  1987年   18篇
  1986年   20篇
  1985年   14篇
  1984年   9篇
  1983年   11篇
  1982年   7篇
  1981年   2篇
  1976年   1篇
  1958年   1篇
  1950年   1篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
21.
Candidatus Liberibacter asiaticus” (CLas) is an uncultureable α-proteobacterium associated with citrus Huanglongbing (HLB, yellow shoot disease), a highly destructive disease affecting citrus production worldwide. HLB was observed in Guangdong Province of China over a hundred years ago and remains endemic there. Little is known about CLas biology due to its uncultureable nature. This study began with the genome sequence analysis of CLas Strain A4 from Guangdong in the prophage region. Within the two currently known prophage types, Type 1 (SC1-like) and Type 2 (SC2-like), A4 genome contained only a Type 2 prophage, CGdP2, namely. An analysis on CLas strains collected in Guangdong showed that Type 2 prophage dominated the bacterial population (82.6%, 71/86). An extended survey covering five provinces in southern China also revealed the predominance of single prophage (Type 1 or Type 2) in the CLas population (90.4%, 169/187). CLas strains with two and no prophage types accounted for 7.2% and 2.8%, respectively. In silico analyses on CGdP2 identified a CRISPR (clustered regularly interspaced short palindromic repeats)/cas (CRISPR-associated protein genes) system, consisting of four 22 bp repeats, three 23 bp spacers and 9 predicted cas. Similar CRISPR/cas systems were detected in all 10 published CLas prophages as well as 13 CLas field strains in southern China. Both Type 1 and Type 2 prophages shared almost identical sequences in spacer 1 and 3 but not spacer 2. Considering that the function of a CRISPR/cas system was to destroy invading DNA, it was hypothesized that a pre-established CLas prophage could use its CRISPR/cas system guided by spacer 1 and/or 3 to defeat the invasion of the other phage/prophage. This hypothesis explained the predominance of single prophage type in the CLas population in southern China. This is the first report of CRISPR/cas system in the “Ca. Liberibacter” genera.  相似文献   
22.
23.
报道广东省种子植物分布新记录2属——甜茅属(Glyceria R. Br.)及锦鸡儿属(Caragana Fabr.),2个新记录种——甜茅[Glyceria acutiflora subsp. japonica (Steud.) T. Koyama et Kawano]及锦鸡儿[Caragana sinica (Buc’hoz) Rehder],均发现于丹霞山国家级自然保护区。新记录的发现对于研究丹霞山的区系发生具有一定指示意义。  相似文献   
24.
25.
Oxidative stress is important for the initiation and progression of cancers, which confers the cells with a survival advantage by inducing oxidative adaption and drug resistance. Therefore, developing strategies to promote oxidative stress-induced cytotoxicity could be important for cancer therapy. Herein, we found that H2O2-mediated oxidative stress increases TRPV2 expression in human hepatoma (HepG2 and Huh-7) cells. This occurred at the mRNA and protein levels in a dose-dependent manner. The significance of TRPV2 in promoting H2O2-induced cell death was demonstrated in gain and loss of function studies with overexpression and knockdown of TRPV2, respectively. Mechanistically, H2O2-induced cell death involves inhibition of pro-survival signaling proteins (Akt, Nrf2) and activation of pro-death signaling proteins (p38, JNK1). Overexpression of TRPV2 in H2O2-treated hepatoma cells aggravates the inhibition of Akt and Nrf2, while it enhances the activation of p38 and JNK1 at the early stage of cell death. Interestingly, increased expression of TRPV2 in HepG2 cells improved the efficacy of stress-associated chemicals to induce cell death. Our findings suggest that TRPV2 acts as an important enhancer for H2O2-induced cytotoxicity. This process occurred by the inhibition of Akt and Nrf2 as well as the early activation of p38 and JNK1. These findings have important implications for inhibition of oxidative adaption and drug resistance.  相似文献   
26.
Due to the feature of high hydrolysis, tannase is widely used in food, beverage, brewing and other fields. However, high cost in producing natural tannase makes it difficult to apply tannase to industry in a large-scale. Microbial expression systems can be used for preparing numerous amount of enzyme at low cost, so in this paper Aspergillus niger N5-5 was expressed using E. coli system. Specific primers were designed based on the Aspergillus niger N5-5 sequence N3 (GenBank, No.: KP677552), and tannase gene tan was promoted to carry 6 His tag and enzyme cutting site which contains NdeI/HindIII using PCR amplification. Then, tannase gene tan was connected to expression vector by NdeI/HindIII enzyme cutting. In this way, recombinant expression vector tan-pET43.1a was formed. Then, the expression vector pET43.1a by NdeI/HindIII enzyme cutting was transformed into E. coli BL21 (DE3) to induce expression of Aspergillus niger N5-5. When the induced fungi were disrupted by the ultrasonic wave, the crude enzyme was extracted and purified by using the IMAC, and then the activity of the crude enzyme and pure enzyme was determined. According to the results of determination of the tannase activity, the tannase activity of the crude enzyme was greatly improved after the crude enzyme was purified, and the specific activity of the pure enzyme was about 8 times of that of the crude enzyme. The results of SDS-PAGE of the pure enzyme showed that the molecular mass of the pure enzyme was about 65 kDa/64–65 kDa, which was consistent with the expected result (64.2 kDa), It can be concluded that the crude enzyme solution was purified successfully. The results of pure enzyme’s protein identification by Western Blotting showed that clear protein bands pro-3 were observed. Molecular mass of clear protein bands pro-3 was about 65 kDa, which was in line with the expected results (64.2 kDa). It can be seen that the aforementioned expression protein could be specifically combined with His tag. It proved expression protein to be a recombinant fusion protein with 6 His tag.  相似文献   
27.
As a key factor for cell pluripotent and self-renewing phenotypes, SOX2 has attracted scientists’ attention gradually in recent years. However, its exact effects in dental pulp stem cells (DPSCs) are still unclear. In this study, we mainly investigated whether SOX2 could affect some biological functions of DPSCs. DPSCs were isolated from the dental pulp of human impacted third molar. SOX2 overexpressing DPSCs (DPSCs-SOX2) were established through retroviral infection. The effect of SOX2 on cell proliferation, migration and adhesion ability was evaluated with CCK-8, trans-well system and fibronectin-induced cell attachment experiment respectively. Whole genome expression of DPSCs-SOX2 was analyzed with RNA microarray. Furthermore, a rescue experiment was performed with SOX2-siRNA in DPSC-SOX2 to confirm the effect of SOX2 overexpression in DPSCs. We found that SOX2 overexpression could result in the enhancement of cell proliferation, migration, and adhesion in DPSCs obviously. RNA microarray analysis indicated that some key genes in the signal pathways associated with cell cycle, migration and adhesion were upregulated in different degree, and the results were further confirmed with qPCR and western-blot. Finally, DPSC-SOX2 transfected with SOX2-siRNA showed a decrease of cell proliferation, migration and adhesion ability, which further confirmed the biological effect of SOX2 in human DPSCs. This study indicated that SOX2 could improve the cell proliferation, migration and adhesion ability of DPSCs through regulating gene expression about cell cycle, migration and adhesion, and provided a novel strategy to develop seed cells with strong proliferation, migration and adhesion ability for tissue engineering.  相似文献   
28.
Docetaxel resistance remains one of the main problems in clinical treatment of metastatic prostate cancer (PCa). Previous studies identified differently expressed lncRNAs in docetaxel-resistant PCa cell lines, while the potential mechanisms were still unknown. In the present study, we found NEAT1 was expressed at high levels in docetaxel-resistant PCa clinical samples and related cell lines. When knockdown NEAT1, cell proliferation and invasion in docetaxel-resistant PCa cells in vitro and in vivo were downregulated. Our further researches explained that NEAT1 exerts oncogenic function in PCa by competitively ‘sponging’ both miR-34a-5p and miR-204-5p. Inhibition of miR-34a-5p or miR-204-5p expression mimics the docetaxel-resistant activity of NEAT1, whereas ectopic expression of miR-34a-5p or miR-204-5p attenuates the anti-drug function of NEAT1 in PCa cells. Besides, we also found ACSL4 is a target of both miR-34a-5p and miR-204-5p, and ACSL4 was also inhibited by miR-34a-5p and miR-204-5p. Moreover, suppression of miR-34a-5p or/and miR-204-5p greatly restrained the expression of ACSL4 upon NEAT1 overexpression. Joint expression of miR-34a-5p and miR-204a-5p synergistically decreased the expression of ASCL4, indicating miR-34a-5p and miR-204a-5p collaboratively inhibit the expression of ACSL4. Innovatively, we concluded that NEAT1 contributes to the docetaxel resistance by increasing ACSL4 via sponging miR-34a-5p and miR-204-5p in PCa cells.  相似文献   
29.
In eukaryotes, the ubiquitin-proteasome system (UPS) and autophagy are two major intracellular protein degradation pathways. Several lines of evidence support the emerging concept of a coordinated and complementary relationship between these two processes, and a particularly interesting finding is that the inhibition of the proteasome induces autophagy. Yet, there is limited knowledge of the regulation of the UPS by autophagy. In this study, we show that the disruption of ATG5 and ATG32 genes in yeast cells under both nutrient-deficient conditions as well as stress that causes mitochondrial dysfunction leads to an activation of proteasome. The same scenario occurs after pharmacological inhibition of basal autophagy in cultured human cells. Our findings underline the view that the two processes are interconnected and tend to compensate, to some extent, for each other's functions.  相似文献   
30.
The diatom genus Pseudo-nitzschia (Peragallo) associated with the production of domoic acid (DA), the toxin reposnsible for amnesic shellfish poisoning, is abundant in Scottish waters. A two year study examined the relationship between Pseudo-nitzschia cells in the water column and DA concentration in blue mussels (Mytilus edulis) at two sites, and king scallops (Pecten maximus) at one site. The rate of DA uptake and depuration differed greatly between the two species with M. edulis whole tissue accumulating and depurating 7 μg g−1 (now expressed as mg kg−1) per week. In contrast, it took 12 weeks for DA to depurate from P. maximus gonad tissue from a concentration of 68 μg g−1 (now mg kg−1) to <20 μg g−1 (now mg kg‐1). The DA depuration rate from P. maximus whole tissue was <5% per week during both years of the study. Correlations between the Pseudo-nitzschia cell densities and toxin concentrations were weak to moderate for M. edulis and weak for P. maximus. Seasonal diversity on a species level was observed within the Pseudo-nitzschia genus at both sites with more DA toxicity associated with summer/autumn Pseudo-nitzschia blooms when P. australis was observed in phytoplankton samples. This study reveals the marked difference in DA uptake and depuration in two shellfish species of commercial importance in Scotland. The use of these shellfish species to act as a proxy for DA in the environment still requires investigation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号