首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   29篇
  免费   3篇
  国内免费   2篇
  2023年   1篇
  2022年   1篇
  2021年   1篇
  2020年   3篇
  2019年   3篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2015年   4篇
  2014年   4篇
  2013年   3篇
  2012年   3篇
  2011年   3篇
  2009年   1篇
  2008年   1篇
  2000年   1篇
  1998年   1篇
排序方式: 共有34条查询结果,搜索用时 171 毫秒
11.
A disposable electrochemiluminescent (ECL) immunosensor array was fabricated on a screen-printed carbon electrode (SPCE) substrate to perform multiplexed immunoassay (MIA) for the first time. The SPCE substrate was composed of an array of four carbon working electrodes, one common Ag/AgCl reference electrode, and one common carbon counter electrode. The immunosensor array was constructed by site-selectively immobilizing multiple antigens on different working electrodes of the SPCE substrate. With a competitive immunoassay format, the immobilized antigens competed with antigens in the sample to capture their corresponding tri(2,2'-bipyridyl)ruthenium(II)-labeled antibodies. The ECL signals from the immunosensors in this array were sequentially detected by a photomultiplier with the aid of a homemade single-pore-four-throw switch. Due to the ECL readout mechanism and the sequential detection mode, it could avoid the cross-talk between the adjacent immunosensors, which was common in other reported immunosensor array. Human, rabbit and mouse immunoglobulin Gs were near-simultaneously assayed as the model analytes. The linear ranges for them were 10-400, 20-400, and 20-400 ng/mL, with detection limits of 2.9, 6.1 and 6.5 ng/mL (S/N=3), respectively. This novel ECL strategy based on immunosensor array coupled with non-array detector provided a simple, sensitive, low-cost and time-saving approach for MIA. It showed great application potential in point-of-care test and field analysis of bio-agents, with mass production potential and high throughput.  相似文献   
12.
1-Butanol, which is a specific inhibitor of phospholipase D, usually inhibits phosphatidic acid (PA) production and blocks the PA-dependent signaling pathway under stress conditions. However, the effects of 1-butanol on plant cells under non-stress condition are still unclear. In this study, we report that 1-butanol induced a dose dependent cell death in poplar (Populus euphratica) cell cultures. In contrast, the control 2-butanol and ethanol had no effects on cell viability. 1-Butanol-treated cells displayed hallmark features of programmed cell death (PCD), such as shrinkage of the cytoplasm, DNA fragmentation, condensed or stretched chromatin and the activation of caspase-3-like protease. Exogenous application of PA markedly inhibited the 1-butanol-induced PCD. 1-Butanol also caused a burst of mitochondrial H2O2 ([H2O2]mit) that was usually accompanied by a loss of mitochondrial membrane potential (?Ψm). Supplement of PA, antioxidant enzyme (catalase) and antioxidant (ascorbic acid) reversed this effect. Moreover, a significant increase of nitric oxide (NO) was observed in 1-butanol-treated poplar cells. This NO burst was suppressed by PA or inhibitors of NO synthesis. Further pharmacological experiments indicate that the burst of NO contributed to the 1-butanol-induced inhibition of antioxidant enzymes and subsequent H2O2-dependent PCD. In conclusion, we propose that 1-butanol is a potent inducer of PCD in plants and this process is regulated by the PA, NO and H2O2.  相似文献   
13.
14.
Sweet potato (Ipomoea batatas) is one of the most important crops in the world, and its production rate is mainly decreased by the sweet potato virus disease (SPVD) caused by the co-infection of sweet potato chlorotic stunt virus (SPCSV) and sweet potato feathery mottle virus. However, methods for improving SPVD resistance have not been established. Thus, this study aimed to enhance SPVD resistance by targeting one of its important pathogenesis-related factors (i.e., SPCSV-RNase3) by using the CRISPR-Cas13 technique. First, the RNA targeting activity of four CRISPR-Cas13 variants were compared using a transient expression system in Nicotiana benthamiana. LwaCas13a and RfxCas13d had more efficient RNA and RNA virus targeting activity than PspCas13b and LshCas13a. Driven by the pCmYLCV promoter for the expression of gRNAs, RfxCas13d exhibited higher RNA targeting activity than that driven by the pAtU6 promoter. Furthermore, the targeting of SPCSV-RNase3 using the LwaCas13a system inhibited its RNA silencing suppressor activity and recovered the RNA silencing activity in N. benthamiana leaf cells. Compared with the wild type, transgenic N. benthamiana plants carrying an RNase3-targeted LwaCas13a system exhibited enhanced resistance against turnip mosaic virus TuMV-GFP and cucumber mosaic virus CMV-RNase3 co-infection. Moreover, transgenic sweet potato plants carrying an RNase3-targeted RfxCas13d system exhibited substantially improved SPVD resistance. This method may contribute to the development of SPVD immune germplasm and the enhancement of sweet potato production in SPVD-prevalent regions.  相似文献   
15.
The alteration of age‐related molecules in the bone marrow microenvironment is one of the driving forces in osteoporosis. These molecules inhibit bone formation and promote bone resorption by regulating osteoblastic and osteoclastic activity, contributing to age‐related bone loss. Here, we observed that the level of microRNA‐31a‐5p (miR‐31a‐5p) was significantly increased in bone marrow stromal cells (BMSCs) from aged rats, and these BMSCs demonstrated increased adipogenesis and aging phenotypes as well as decreased osteogenesis and stemness. We used the gain‐of‐function and knockdown approach to delineate the roles of miR‐31a‐5p in osteogenic differentiation by assessing the decrease of special AT‐rich sequence‐binding protein 2 (SATB2) levels and the aging of BMSCs by regulating the decline of E2F2 and recruiting senescence‐associated heterochromatin foci (SAHF). Notably, expression of miR‐31a‐5p, which promotes osteoclastogenesis and bone resorption, was markedly higher in BMSCs‐derived exosomes from aged rats compared to those from young rats, and suppression of exosomal miR‐31a‐5p inhibited the differentiation and function of osteoclasts, as shown by elevated RhoA activity. Moreover, using antagomiR‐31a‐5p, we observed that, in the bone marrow microenvironment, inhibition of miR‐31a‐5p prevented bone loss and decreased the osteoclastic activity of aged rats. Collectively, our results reveal that miR‐31a‐5p acts as a key modulator in the age‐related bone marrow microenvironment by influencing osteoblastic and osteoclastic differentiation and that it may be a potential therapeutic target for age‐related osteoporosis.  相似文献   
16.
遗传学试题库的研制   总被引:2,自引:2,他引:0  
潘沈元  李宗芸  朱卫中 《遗传》1998,20(5):39-42
利用FoxPro 2.5b设计了遗传学试题库。系统主要分为试题输入、试题查找与编辑、试卷生成、试卷管理、编辑打印、试卷分析、学生成绩管理等部分。系统将窗口设计和菜单式设计相结合,集多种功能于一个窗口之中,窗口之间可以相互调用,具有题型多,速度快,直观性强,操作灵活方便等特点。该题库现已输入1500多道试题,生成标准试卷16份。 Abstract:A computer system of genetics test question pool was designed with FoxPro 2.5b.This system includes mainly as follows:input,search,and edit of test questions,generation,management,edit,print and analysis of examination paper and student scored management,etc.The design mthod of window and menu style were used in this system.It collects multi-function in a window,and has some specialties such as calling each other among windows,many question styles,high speed,visualization and easy operation,etc.So far 1 500 test questions have been input into this system and 16 standard examination papers have been generated.  相似文献   
17.
MYB转录因子具有多种生物学功能,在植物响应生物和非生物胁迫中发挥重要作用。该文从盐胁迫后的甘薯(Ipomoea batatas)水培苗转录组数据(RNA-seq)中筛选出2个受盐胁迫显著上调表达的MYB基因,分别命名为IbMYB3和IbMYB4。多种非生物胁迫和植物生长物质处理下的基因表达分析显示,IbMYB3受逆境诱导显著上调表达,暗示其可能参与甘薯非生物胁迫响应。生物信息学分析表明,IbMYB3开放阅读框长度为1059 bp,编码353个氨基酸残基,蛋白分子量为39.41 kDa,理论等电点(PI)为5.26,为酸性带负电的亲水性蛋白。亚细胞定位结果表明,IbMYB3蛋白定位于细胞核,具有较强的转录激活活性。上述结果表明,IbMYB3转录因子可能在甘薯非生物胁迫响应过程中发挥重要调控作用,研究结果为进一步探明IbMYB3基因的功能奠定了基础。  相似文献   
18.
Besides classical scorpion toxin–potassium channel binding modes, novel modes remain unknown. Here, we report a novel binding mode of native toxin BmKTX towards Kv1.3 channel. The combined experimental and computational data indicated that BmKTX-D33H analog used the classical anti-parallel β-sheet domain as the channel-interacting interface together with the conserved channel pore-blocking Lys26. However, the wild-type BmKTX was found to use Arg23 rather than Lys26 as the new pore-blocking residue, and mainly adopt the turn motif between the α-helix and antiparallel β-sheet domains to recognize Kv1.3 channel. Together, these findings not only reveal that scorpion toxin–potassium channel interaction modes are more diverse than thought, but also highlight the functional role of toxin acidic residues in mediating diverse toxin–potassium channel binding modes.  相似文献   
19.
Although numerous Kunitz‐type toxins were isolated from snake venom, no bifunctional Kunitz‐type snake toxins with protease and potassium channel inhibiting properties have been reported till now. With the help of bioinformatics analyses and biological experiments, we characterized Kunitz‐type snake toxin BF9 as a bifunctional peptide. Enzyme and inhibitor reaction kinetics experiments showed that BF9 inhibited α‐chymotrypsin with Ki value of 1.8 × 10?8 M. Electrophysiological experiments showed that BF9 inhibited the Kv1.3 potassium channel with an IC50 of 120.0 nM, which demonstrated that serine protease inhibitor BF9 could also inhibit potassium channels. In addition, the key amino acids of BF9 responsible for the unique bifunctional mechanism are further investigated. To the best of our knowledge, BF9 is the first Kunitz‐type snake peptide with the unique bifunctionality of potassium channel and serine protease inhibiting properties, providing novel insights into divergent evolution and functional applications of snake Kunitz‐type peptides.  相似文献   
20.
Among the three extracellular domains of the tetrameric voltage-gated K+ (Kv) channels consisting of six membrane-spanning helical segments named S1–S6, the functional role of the S1-S2 linker still remains unclear because of the lack of a peptide ligand. In this study, the Kv1.3 channel S1-S2 linker was reported as a novel receptor site for human β-defensin 2 (hBD2). hBD2 shifts the conductance-voltage relationship curve of the human Kv1.3 channel in a positive direction by nearly 10.5 mV and increases the activation time constant for the channel. Unlike classical gating modifiers of toxin peptides from animal venoms, which generally bind to the Kv channel S3-S4 linker, hBD2 only targets residues in both the N and C termini of the S1-S2 linker to influence channel gating and inhibit channel currents. The increment and decrement of the basic residue number in a positively charged S4 sensor of Kv1.3 channel yields conductance-voltage relationship curves in the positive direction by ∼31.2 mV and 2–4 mV, which suggests that positively charged hBD2 is anchored in the channel S1-S2 linker and is modulating channel activation through electrostatic repulsion with an adjacent S4 helix. Together, these findings reveal a novel peptide ligand that binds with the Kv channel S1-S2 linker to modulate channel activation. These findings also highlight the functional importance of the Kv channel S1-S2 linker in ligand recognition and modification of channel activation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号