首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2485篇
  免费   131篇
  国内免费   1篇
  2023年   1篇
  2022年   6篇
  2021年   22篇
  2020年   15篇
  2019年   25篇
  2018年   30篇
  2017年   29篇
  2016年   53篇
  2015年   86篇
  2014年   102篇
  2013年   183篇
  2012年   162篇
  2011年   146篇
  2010年   98篇
  2009年   116篇
  2008年   155篇
  2007年   165篇
  2006年   170篇
  2005年   166篇
  2004年   154篇
  2003年   168篇
  2002年   193篇
  2001年   26篇
  2000年   18篇
  1999年   14篇
  1998年   34篇
  1997年   25篇
  1996年   23篇
  1995年   18篇
  1994年   19篇
  1993年   27篇
  1992年   26篇
  1991年   15篇
  1990年   13篇
  1989年   11篇
  1988年   11篇
  1987年   5篇
  1986年   10篇
  1985年   7篇
  1984年   7篇
  1983年   10篇
  1982年   21篇
  1981年   10篇
  1980年   9篇
  1978年   3篇
  1977年   3篇
  1976年   4篇
  1969年   1篇
  1968年   2篇
排序方式: 共有2617条查询结果,搜索用时 375 毫秒
81.
Tumor necrosis factor (TNF)/TNF receptor (TNFR) superfamily members play essential roles in the development of the different phases of the immune response. Mouse LIGHT (TNFSF14) is a type II transmembrane protein with a C-terminus extracellular TNF homology domain (THD) that assembles in homotrimers and regulates the course of the immune responses by signaling through 2 receptors, the herpes virus entry mediator (HVEM, TNFSFR14) and the lymphotoxin β receptor (LTβR, TNFSFR3). LIGHT is a membrane-bound protein transiently expressed on activated T cells, natural killer (NK) cells and immature dendritic cells that can be proteolytically cleaved by a metalloprotease and released to the extracellular milieu. The immunotherapeutic potential of LIGHT blockade was evaluated in vivo. Administration of an antagonist of LIGHT interaction with its receptors attenuated the course of graft-versus-host reaction and recapitulated the reduced cytotoxic activity of LIGHT-deficient T cells adoptively transferred into non-irradiated semiallogeneic recipients. The lack of LIGHT expression on donor T cells or blockade of LIGHT interaction with its receptors slowed down the rate of T cell proliferation and decreased the frequency of precursor alloreactive T cells, retarding T cell differentiation toward effector T cells. The blockade of LIGHT/LTβR/HVEM pathway was associated with delayed downregulation of interleukin-7Rα and delayed upregulation of inducible costimulatory molecule expression on donor alloreactive CD8 T cells that are typical features of impaired T cell differentiation. These results expose the relevance of LIGHT/LTβR/HVEM interaction for the potential therapeutic control of the allogeneic immune responses mediated by alloreactive CD8 T cells that can contribute to prolong allograft survival.  相似文献   
82.
AimWe performed a replication study in a Japanese population to evaluate the association between type 2 diabetes and six susceptibility loci (TMEM154, SSR1, FAF1, POU5F1, ARL15, and MPHOSPH9) originally identified by a transethnic meta-analysis of genome-wide association studies (GWAS) in 2014.MethodsWe genotyped 7,620 Japanese participants (5,817 type 2 diabetes patients and 1,803 controls) for each of the single nucleotide polymorphisms (SNPs) using a multiplex polymerase chain reaction invader assay. The association of each SNP locus with the disease was evaluated using logistic regression analysis.ResultsOf the six SNPs examined in this study, four (rs6813195 near TMEM154, rs17106184 in FAF1, rs3130501 in POU5F1 and rs4275659 near MPHOSPH9) had the same direction of effect as in the original reports, but two (rs9505118 in SSR1 and rs702634 in ARL15) had the opposite direction of effect. Among these loci, rs3130501 and rs4275659 were nominally associated with type 2 diabetes (rs3130501; p = 0.017, odds ratio [OR] = 1.113, 95% confidence interval [CI] 1.019–1.215, rs4275659; p = 0.012, OR = 1.127, 95% CI 1.026–1.238, adjusted for sex, age and body mass index), but we did not observe a significant association with type 2 diabetes for any of the six evaluated SNP loci in our Japanese population.ConclusionsOur results indicate that effects of the six SNP loci identified in the transethnic GWAS meta-analysis are not major among the Japanese, although SNPs in POU5F1 and MPHOSPH9 loci may have some effect on susceptibility to type 2 diabetes in this population.  相似文献   
83.
To analyze a variety of protein phosphatases, we developed phosphorylated TandeMBP (P-TandeMBP), in which two different mouse myelin basic protein isoforms were fused in tandem, as a protein phosphatase substrate. P-TandeMBP was prepared efficiently in four steps: (1) phosphorylation of TandeMBP by a protein kinase mixture (Ca2+/calmodulin-dependent protein kinase Iδ, casein kinase 1δ, and extracellular signal-regulated kinase 2); (2) precipitation of both P-TandeMBP and protein kinases to remove ATP, Pi, and ADP; (3) acid extraction of P-TandeMBP with HCl to remove protein kinases; and (4) neutralization of the solution that contains P-TandeMBP with Tris. In combination with the malachite green assay, P-TandeMBP can be used to detect protein phosphatase activity without using radioactive materials. Moreover, P-TandeMBP served as an efficient substrate for PPM family phosphatases (PPM1A, PPM1B, PPM1D, PPM1F, PPM1G, PPM1H, PPM1K, and PPM1M) and PPP family phosphatase PP5. Various phosphatase activities were also detected with high sensitivity in gel filtration fractions from mouse brain using P-TandeMBP. These results indicate that P-TandeMBP might be a powerful tool for the detection of protein phosphatase activities.  相似文献   
84.
85.
86.
Because coastal habitats store large amounts of organic carbon (Corg), the conservation and restoration of these habitats are considered to be important measures for mitigating global climate change. Although future sea‐level rise is predicted to change the characteristics of these habitats, its impact on their rate of Corg sequestration is highly uncertain. Here we used historical depositional records to show that relative sea‐level (RSL) changes regulated Corg accumulation rates in boreal contiguous seagrass–saltmarsh habitats. Age–depth modeling and geological and biogeochemical approaches indicated that Corg accumulation rates varied as a function of changes in depositional environments and habitat relocations. In particular, Corg accumulation rates were enhanced in subtidal seagrass meadows during times of RSL rise, which were caused by postseismic land subsidence and climate change. Our findings identify historical analogs for the future impact of RSL rise driven by global climate change on rates of Corg sequestration in coastal habitats.  相似文献   
87.
Journal of Industrial Microbiology & Biotechnology - Menaquinone is an obligatory component of the electron-transfer pathway in microorganisms. Its biosynthetic pathway was established by...  相似文献   
88.
89.
90.
The acrosome reaction of Xenopus sperm is triggered by the acrosome reaction-inducing substance in Xenopus (ARISX), an oviductal pars recta-derived, sugar-rich substance decorated on the entire surface of the vitelline envelope (VE) during ovulation. Here we addressed the functional importance of the sugar moiety in ARISX. Among various lectins examined, soybean agglutinin and Dolichos biflorus agglutinin were shown to abolish the acrosome reaction-inducing activity of ARISX present in pars recta extract or on the VE, indicating the importance of the terminal alpha-N-acetylgalactosamine residue for the function of ARISX. Consistently, the acrosome reaction-inducing activity was not affected by proteinase K digestion, in spite of the simultaneous shift of ARISX to a smaller molecular weight. Indirect immunofluorescence microscopic examinations showed that ARISX was distributed as two types of structures on VE; thick fiber-like materials and thin filamentous materials, and that a new structure appeared on the fertilization envelope instead of the thin filamentous materials. Sperm from several amphibian species were subjected to an in vitro assay during induction of the acrosome reaction with ARISX. The resulting limited population of sperm from a non-Xenopus species underwent acrosome reaction, implying a weak species-specificity of ARISX.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号