首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   260篇
  免费   20篇
  国内免费   9篇
  2022年   2篇
  2021年   7篇
  2019年   2篇
  2018年   3篇
  2017年   5篇
  2016年   6篇
  2015年   14篇
  2014年   13篇
  2013年   16篇
  2012年   14篇
  2011年   14篇
  2010年   9篇
  2009年   5篇
  2008年   8篇
  2007年   8篇
  2006年   8篇
  2005年   5篇
  2004年   7篇
  2003年   10篇
  2002年   11篇
  2001年   6篇
  2000年   10篇
  1999年   12篇
  1998年   6篇
  1997年   2篇
  1994年   5篇
  1993年   2篇
  1992年   6篇
  1991年   3篇
  1990年   3篇
  1989年   5篇
  1988年   3篇
  1987年   3篇
  1986年   3篇
  1985年   7篇
  1984年   2篇
  1983年   3篇
  1982年   6篇
  1981年   2篇
  1980年   2篇
  1977年   2篇
  1976年   2篇
  1975年   4篇
  1974年   7篇
  1973年   5篇
  1971年   1篇
  1969年   2篇
  1965年   1篇
  1945年   1篇
  1936年   1篇
排序方式: 共有289条查询结果,搜索用时 15 毫秒
21.
An unconventional use for the polarization optics, associated with a variety of commercially available fluorescence microplate readers, is reported. This novel application has allowed the discrimination of green fluorescent protein (GFP) fluorescence in genetically modified yeast cells from interfering autofluorescent species. The method exploits the unusually high fluorescence anisotropy of GFP compared to smaller fluorophores and autofluorescent species. The principle was successfully applied to resolve the induced GFP signal from that of autofluorescent test compounds, in an assay for genotoxic species. The use of fluorescence polarization enabled both proflavin and methapyrilene to be identified as genotoxic agents in the yeast assay. This would not have been possible using conventional fluorescence alone since these compounds were found to be intensely autofluorescent at the same wavelength as GFP and thus effectively mask the GFP signal.  相似文献   
22.
23.
24.
TetA, a tetracycline cation/proton antiporter, was expressed in Escherichia coli with a C-terminal tag of six histidines, solubilized in dodecyl maltoside and purified in a single step using Ni2+ affinity chromatography. Two-dimensional crystals were obtained after reconstitution of purified protein with lipids. Electron microscopy of negatively stained crystals revealed a trigonal symmetry, from which we infer that this secondary transporter has a trimeric structure. An overall molecular envelope can be described by a triangle of side approximately 100 A enclosing a central stain-filled depression. These dimensions are consistent with those obtained from projection views of single, isolated TetA particles that also display a trimeric architecture, confirming that the threefold symmetry is not simply a consequence of crystal-packing interactions. These data represent the first direct view of the quarternary arrangement of any antibiotic efflux pump. They are fully consistent with biochemical data on TetA, which indicate that it functions as a multimer and that the monomer consists of two domains, one of which plays the major part in oligomerization interactions.  相似文献   
25.
Distinct origins of adult and embryonic blood in Xenopus   总被引:9,自引:0,他引:9  
Ciau-Uitz A  Walmsley M  Patient R 《Cell》2000,102(6):787-796
Whether embryonic and adult blood derive from a single (yolk sac) or dual (yolk sac plus intraembryonic) origin is controversial. Here, we show, in Xenopus, that the yolk sac (VBI) and intraembryonic (DLP) blood compartments derive from distinct blastomeres in the 32-cell embryo. The first adult hematopoietic stem cells (HSCs) are thought to form in association with the floor of the dorsal aorta, and we have detected such aortic clusters in Xenopus using hematopoietic markers. Lineage tracing shows that the aortic clusters derive from the blastomere that gives rise to the DLP. These observations indicate that the first adult HSCs arise independently of the embryonic lineage.  相似文献   
26.
The ArsAB ATPase is an efflux pump located in the inner membrane of Escherichia coli. This transport ATPase confers resistance to arsenite and antimonite by their extrusion from the cells. The pump is composed of two subunits, the catalytic ArsA subunit and the membrane subunit ArsB. The complex is similar in many ways to ATP-binding cassette ('ABC') transporters, which typically have two groups of six transmembrane-spanning helical segments and two nucleotide-binding domains (NBDs). The 45 kDa ArsB protein has 12 transmembrane-spanning segments. ArsB contains the substrate translocation pathway and is capable of functioning as an anion uniporter. The 63 kDa ArsA protein is a substrate-activated ATPase. It has two homologous halves, A1 and A2, which are clearly the result of an ancestral gene duplication and fusion. Each half has a consensus NBD. The mechanism of allosteric activation of the ArsA ATPase has been elucidated by a combination of molecular genetics and biochemical, structural and kinetic analyses. Conformational changes produced by binding of substrates, activator and/or products could be revealed by stopped-flow fluorescence measurements with single-tryptophan derivatives of ArsA. The results demonstrate that the rate-limiting step in the overall reaction is a slow isomerization between two conformations of the enzyme. Allosteric activation increases the rate of this isomerization such that product release becomes rate-limiting, thus accelerating catalysis. ABC transporters, which exhibit similar substrate activation of ATPase activity, can undergo similar conformational changes to overcome a rate-limiting step. Thus the ArsAB pump is a useful model for elucidating mechanistic aspects of the ABC superfamily of transport ATPases.  相似文献   
27.
Skull structure is intimately associated with feeding ability in vertebrates, both in terms of specific performance measures and general ecological characteristics. This study quantitatively assessed variation in the shape of the cranium and mandible in varanoid lizards, and its relationship to structural performance (von Mises strain) and interspecific differences in feeding ecology. Geometric morphometric and linear morphometric analyses were used to evaluate morphological differences, and finite element analysis was used to quantify variation in structural performance (strain during simulated biting, shaking and pulling). This data was then integrated with ecological classes compiled from relevant scientific literature on each species in order to establish structure-function relationships. Finite element modelling results showed that variation in cranial morphology resulted in large differences in the magnitudes and locations of strain in biting, shaking and pulling load cases. Gracile species such as Varanus salvadorii displayed high strain levels during shaking, especially in the areas between the orbits. All models exhibit less strain during pull back loading compared to shake loading, even though a larger force was applied (pull =30N, shake = 20N). Relationships were identified between the morphology, performance, and ecology. Species that did not feed on hard prey clustered in the gracile region of cranial morphospace and exhibited significantly higher levels of strain during biting (P = 0.0106). Species that fed on large prey clustered in the elongate area of mandible morphospace. This relationship differs from those that have been identified in other taxonomic groups such as crocodiles and mammals. This difference may be due to a combination of the open ‘space-frame’ structure of the varanoid lizard skull, and the ‘pull back’ behaviour that some species use for processing large prey.  相似文献   
28.

Background

Influenza viruses are a major cause of morbidity and mortality around the world. More recently, a swine-origin influenza A (H1N1) virus that is spreading via human-to-human transmission has become a serious public concern. Although vaccination is the primary strategy for preventing infections, influenza antiviral drugs play an important role in a comprehensive approach to controlling illness and transmission. In addition, a search for influenza-inhibiting drugs is particularly important in the face of high rate of emergence of influenza strains resistant to several existing influenza antivirals.

Methods

We searched for novel anti-influenza inhibitors using a cell-based neutralization (inhibition of virus-induced cytopathic effect) assay. After screening 20,800 randomly selected compounds from a library from ChemDiv, Inc., we found that BPR1P0034 has sub-micromolar antiviral activity. The compound was resynthesized in five steps by conventional chemical techniques. Lead optimization and a structure-activity analysis were used to improve potency. Time-of-addition assay was performed to target an event in the virus life cycle.

Results

The 50% effective inhibitory concentration (IC50) of BPR1P0034 was 0.42 ± 0.11 μM, when measured with a plaque reduction assay. Viral protein and RNA synthesis of A/WSN/33 (H1N1) was inhibited by BPR1P0034 and the virus-induced cytopathic effects were thus significantly reduced. BPR1P0034 exhibited broad inhibition spectrum for influenza viruses but showed no antiviral effect for enteroviruses and echovirus 9. In a time-of-addition assay, in which the compound was added at different stages along the viral replication cycle (such as at adsorption or after adsorption), its antiviral activity was more efficient in cells treated with the test compound between 0 and 2 h, right after viral infection, implying that an early step of viral replication might be the target of the compound. These results suggest that BPR1P0034 targets the virus during viral uncoating or viral RNA importation into the nucleus.

Conclusions

To the best of our knowledge, BPR1P0034 is the first pyrazole-based anti-influenza compound ever identified and characterized from high throughput screening to show potent (sub-μM) antiviral activity. We conclude that BPR1P0034 has potential antiviral activity, which offers an opportunity for the development of a new anti-influenza virus agent.  相似文献   
29.
30.

Background

Hormone-refractory prostate cancer (HRPC), which is resistant to hormone therapy, is a major obstacle in clinical treatment. An approach to inhibit HRPC growth and ultimately to kill cancers is highly demanded.

Results

KUD773 induced the anti-proliferative effect and subsequent apoptosis in PC-3 and DU-145 (two HRPC cell lines); whereas, it showed less active in normal prostate cells. Further examination showed that KUD773 inhibited tubulin polymerization and induced an increase of mitotic phosphoproteins and polo-like kinase 1 (PLK1) phosphorylation, indicating a mitotic arrest of the cell cycle through an anti-tubulin action. The kinase assay demonstrated that KUD773 inhibited Aurora A activity. KUD773 induced an increase of Cdk1 phosphorylation at Thr161 (a stimulatory phosphorylation site) and a decrease of phosphorylation at Tyr15 (an inhibitory phosphorylation site), suggesting the activation of Cdk1. The data were substantiated by an up-regulation of cyclin B1 (a Cdk1 partner). Furthermore, KUD773 induced the phosphorylation and subsequent down-regulation of Bcl-2 and activation of caspase cascades.

Conclusions

The data suggest that KUD773 induces apoptotic signaling in a sequential manner. It inhibits tubulin polymerization associated with an anti-Aurora A activity, leading to Cdk1 activation and mitotic arrest of the cell cycle that in turn induces Bcl-2 degradation and a subsequent caspase activation in HRPCs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号