首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   74篇
  免费   1篇
  2021年   2篇
  2020年   4篇
  2019年   1篇
  2015年   2篇
  2014年   3篇
  2013年   2篇
  2012年   2篇
  2011年   5篇
  2010年   5篇
  2009年   3篇
  2008年   2篇
  2007年   3篇
  2005年   4篇
  2003年   1篇
  2002年   1篇
  2000年   6篇
  1999年   4篇
  1997年   1篇
  1992年   2篇
  1991年   3篇
  1990年   3篇
  1987年   4篇
  1985年   1篇
  1983年   2篇
  1982年   2篇
  1981年   2篇
  1979年   1篇
  1977年   1篇
  1976年   1篇
  1962年   1篇
  1958年   1篇
排序方式: 共有75条查询结果,搜索用时 105 毫秒
71.
Broad-specificity glycoside hydrolases (GHs) contribute to plant biomass hydrolysis by degrading a diverse range of polysaccharides, making them useful catalysts for renewable energy and biocommodity production. Discovery of new GHs with improved kinetic parameters or more tolerant substrate-binding sites could increase the efficiency of renewable bioenergy production even further. GH5 has over 50 subfamilies exhibiting selectivities for reaction with β-(1,4)–linked oligo- and polysaccharides. Among these, subfamily 4 (GH5_4) contains numerous broad-selectivity endoglucanases that hydrolyze cellulose, xyloglucan, and mixed-linkage glucans. We previously surveyed the whole subfamily and found over 100 new broad-specificity endoglucanases, although the structural origins of broad specificity remained unclear. A mechanistic understanding of GH5_4 substrate specificity would help inform the best protein design strategies and the most appropriate industrial application of broad-specificity endoglucanases. Here we report structures of 10 new GH5_4 enzymes from cellulolytic microbes and characterize their substrate selectivity using normalized reducing sugar assays and MS. We found that GH5_4 enzymes have the highest catalytic efficiency for hydrolysis of xyloglucan, glucomannan, and soluble β-glucans, with opportunistic secondary reactions on cellulose, mannan, and xylan. The positions of key aromatic residues determine the overall reaction rate and breadth of substrate tolerance, and they contribute to differences in oligosaccharide cleavage patterns. Our new composite model identifies several critical structural features that confer broad specificity and may be readily engineered into existing industrial enzymes. We demonstrate that GH5_4 endoglucanases can have broad specificity without sacrificing high activity, making them a valuable addition to the biomass deconstruction toolset.  相似文献   
72.
When the growth of serum-arrested GC-7 cells, a clone from African green monkey kidney, was induced by the addition of 10% calf serum, they began to enter S phase after 15-16 h. When stimulated cells were cultured in the presence of 0.6 micrograms/ml of cytochalasin D, the entrance into S phase was inhibited. Treatment of cells with cytochalasin D during the period earlier than 8 h or later than 11 h after the serum stimulation showed no or little inhibitory effect on the entrance of cells into S phase. Inhibition of the entrance into S phase was observed only when stimulated cells were treated with cytochalasin D during the periods including 9-10 h after stimulation. A rapid increase in protein synthesis occurred 9-12 h after the serum stimulation and was inhibited in the presence of cytochalasin D. These and other results suggested that in the course of the prereplicative process from Go through S phase only the stage around 9-10 h after the start of the cell cycle was sensitive to cytochalasin D and that the block of the cycle was correlated with the inhibition of protein synthesis at this stage.  相似文献   
73.
GC-7 cells, a cell line from African green monkey kidney, which had been growth arrested in G0 phase by serum deprivation, entered S phase 15 h after serum stimulation. They were blocked from entering S phase in the presence of 0.6 micrograms/ml of cytochalasin D. The cells growth arrested between G0 and S phase by cytochalasin D entered S phase 6 h following the removal of the drug. The progression of S, G2, and M phases was not affected by cytochalasin D. On the other hand, when G0-arrested GC-7 cells were stimulated with serum for 23 h up to a late S/G2 phase and then cultured in the presence of cytochalasin D, or when an exponentially growing culture was treated with the drug, the cells were growth arrested at a point 15 h, not 6 h, before the next S phase. This point of growth arrest is kinetically similar to G0 phase, both occur 15 h before S phase, but is different from G0 in terms of c-fos expression after release from the block.  相似文献   
74.
为了研究杂交构树UDP-葡萄糖脱氢酶基因(DDBJ,BpUGDH基因登录号为LC457701)启动子不同区域的表达活性,利用5'端缺失及同源重组实验技术,将5个不同长度的BpUGDH启动子5'端缺失片段与GUS基因连接,并通过农杆菌介导法瞬时转化烟草;同时,为了定位BpUGDH基因编码的蛋白在细胞中表达的具体位置,利用GFP报告基因融合目的基因进行蛋白质的亚细胞定位。结果显示:BpUGDH基因启动子-244 bp以内的序列均能介导GUS基因的诱导表达,并且-973、-465、-355、-281和-244 bp之间的区域可能对BpUGDH基因启动子的活性发挥着至关重要的作用。另外,BpUGDH基因编码蛋白的亚细胞定位结果显示:BpUGDH位于叶绿体中。  相似文献   
75.
Plants take up and translocate nutrients through transporters. In Arabidopsis thaliana, the borate exporter BOR1 acts as a key transporter under boron (B) limitation in the soil. Upon sufficient-B supply, BOR1 undergoes ubiquitination and is transported to the vacuole for degradation, to avoid overaccumulation of B. However, the mechanisms underlying B-sensing and ubiquitination of BOR1 are unknown. In this study, we confirmed the lysine-590 residue in the C-terminal cytosolic region of BOR1 as the direct ubiquitination site and showed that BOR1 undergoes K63-linked polyubiquitination. A forward genetic screen identified that amino acid residues located in vicinity of the substrate-binding pocket of BOR1 are essential for the vacuolar sorting. BOR1 variants that lack B-transport activity showed a significant reduction of polyubiquitination and subsequent vacuolar sorting. Coexpression of wild-type (WT) and a transport-defective variant of BOR1 in the same cells showed degradation of the WT but not the variant upon sufficient-B supply. These findings suggest that polyubiquitination of BOR1 relies on its conformational transition during the transport cycle. We propose a model in which BOR1, as a B transceptor, directly senses the B concentration and promotes its own polyubiquitination and vacuolar sorting for quick and precise maintenance of B homeostasis.

The borate transporter BOR1 senses the boron concentration through its borate transport activity for K63-linked polyubiquitination and subsequent degradation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号