首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   674篇
  免费   33篇
  2023年   2篇
  2022年   4篇
  2021年   6篇
  2020年   3篇
  2019年   7篇
  2018年   7篇
  2017年   7篇
  2016年   20篇
  2015年   25篇
  2014年   36篇
  2013年   40篇
  2012年   48篇
  2011年   67篇
  2010年   28篇
  2009年   26篇
  2008年   41篇
  2007年   55篇
  2006年   39篇
  2005年   35篇
  2004年   43篇
  2003年   31篇
  2002年   43篇
  2001年   9篇
  2000年   3篇
  1999年   3篇
  1998年   5篇
  1997年   1篇
  1996年   9篇
  1995年   5篇
  1994年   2篇
  1993年   7篇
  1992年   4篇
  1991年   5篇
  1990年   4篇
  1989年   6篇
  1988年   2篇
  1987年   2篇
  1986年   4篇
  1985年   2篇
  1984年   1篇
  1983年   2篇
  1982年   3篇
  1981年   2篇
  1979年   1篇
  1978年   2篇
  1977年   1篇
  1976年   2篇
  1975年   5篇
  1974年   1篇
  1969年   1篇
排序方式: 共有707条查询结果,搜索用时 62 毫秒
1.
2.
Intracerebral hemorrhage (ICH) is featured by poor prognosis such as high mortality rate and severe neurological dysfunction. In humans, several valuables including hematoma volume and ventricular expansion of hemorrhage are known to correlate with the extent of mortality and neurological dysfunction. However, relationship between hematoma conditions and the severity of symptoms in animal ICH models has not been clarified. Here we addressed this issue by using 7-tesla magnetic resonance imaging (MRI) on collagenase-induced ICH model in mice. We found that the mortality rate and the performance in behavioral tests did not correlate well with the volume of hematoma. In contrast, when hemorrhage invaded the internal capsule, mice exhibited high mortality and showed poor sensorimotor performance. High mortality rate and poor performance in behavioral tests were also observed when hemorrhage invaded the lateral ventricle, although worsened symptoms associated with ventricular hemorrhage were apparent only during early phase of the disease. These results clearly indicate that invasion of the internal capsule or the lateral ventricle by hematoma is a critical determinant of poor prognosis in experimental ICH model in mice as well as in human ICH patients. MRI assessment may be a powerful tool to refine investigations of pathogenic mechanisms and evaluations of drug effects in animal models of ICH.  相似文献   
3.
4.
3-Ketothiolase deficiency (3KTD) is the result of a deficiency in mitochondrial acetoacetyl-CoA thiolase (T2). The molecular basis of 3KTD was analyzed in a patient (GK10) and his family at the protein, cDNA and gene levels. Protein analyses showed that GK10's T2 protein was undetectable in fibroblasts even with the pulse-protein labeling method and that his parents were carriers of 3KTD. Complementary DNA analyses with PCR showed that T2 cDNA in the patient lacked the normal exon 11 sequence and that his parents were obligatory carriers of the DNA sequence which canceled exon 11. When the PCR-amplified genomic fragments around exon 11 were sequenced, an AG to AC mutation at the 3' splice site of intron 10 was detected. This mutation is presumed to be responsible for exon 11 skipping.  相似文献   
5.

Interbasin water transfers are becoming an increasingly common tool to satisfy municipal and agricultural water demand, but their impacts on movement and gene flow of aquatic organisms are poorly understood. The Grand Ditch is an interbasin water transfer that diverts water from tributaries of the upper Colorado River on the west side of the Continental Divide to the upper Cache la Poudre River on the east side of the Continental Divide. We used single nucleotide polymorphisms to characterize population genetic structure in cutthroat trout (Oncorhynchus clarkii) and determine if fish utilize the Grand Ditch as a movement corridor. Samples were collected from two sites on the west side and three sites on the east side of the Continental Divide. We identified two or three genetic clusters, and relative migration rates and spatial distributions of admixed individuals indicated that the Grand Ditch facilitated bidirectional fish movement across the Continental Divide, a major biogeographic barrier. Previous studies have demonstrated ecological impacts of interbasin water transfers, but our study is one of the first to use genetics to understand how interbasin water transfers affect connectivity between previously isolated watersheds. We also discuss implications on native trout management and balancing water demand and biodiversity conservation.

  相似文献   
6.
IL-17 is a pro-inflammatory cytokine implicated in the pathogenesis of glomerulonephritis and IL-17 deficient mice are protected from nephrotoxic nephritis. However, a regulatory role for IL-17 has recently emerged. We describe a novel protective function for IL-17 in the kidney. Bone marrow chimeras were created using wild-type and IL-17 deficient mice and nephrotoxic nephritis was induced. IL-17 deficient hosts transplanted with wild-type bone marrow had worse disease by all indices compared to wild-type to wild-type bone marrow transplants (serum urea p<0.05; glomerular thrombosis p<0.05; tubular damage p<0.01), suggesting that in wild-type mice, IL-17 production by renal cells resistant to radiation is protective. IL-17 deficient mice transplanted with wild-type bone marrow also had a comparatively altered renal phenotype, with significant differences in renal cytokines (IL-10 p<0.01; IL-1β p<0.001; IL-23 p<0.01), and macrophage phenotype (expression of mannose receptor p<0.05; inducible nitric oxide synthase p<0.001). Finally we show that renal mast cells are resistant to radiation and produce IL-17, suggesting they are potential local mediators of disease protection. This is a novel role for intrinsic cells in the kidney that are radio-resistant and produce IL-17 to mediate protection in nephrotoxic nephritis. This has clinical significance as IL-17 blockade is being trialled as a therapeutic strategy in some autoimmune diseases.  相似文献   
7.
8.
Iron (Fe) deficiency significantly effects plant growth and development. Plant symptoms under excess zinc (Zn) resemble symptoms of Fe‐deficient plants. To understand cross‐talk between excess Zn and Fe deficiency, we investigated physiological parameters of Arabidopsis plants and applied iTRAQ‐OFFGEL quantitative proteomic approach to examine protein expression changes in microsomal fraction from Arabidopsis shoots under those physiological conditions. Arabidopsis plants manifested shoot inhibition and chlorosis symptoms when grown on Fe‐deficient media compared to basal MGRL solid medium. iTRAQ‐OFFGEL approach identified 909 differentially expressed proteins common to all three biological replicates; the majority were transporters or proteins involved in photosynthesis, and ribosomal proteins. Interestingly, protein expression changes between excess Zn and Fe deficiency showed similar pattern. Further, the changes due to excess Zn were dramatically restored by the addition of Fe. To obtain biological insight into Zn and Fe cross‐talk, we focused on transporters, where STP4 and STP13 sugar transporters were predominantly expressed and responsive to Fe‐deficient conditions. Plants grown on Fe‐deficient conditions showed significantly increased level of sugars. These results suggest that Fe deficiency might lead to the disruption of sugar synthesis and utilization.  相似文献   
9.
The ubiquitin ligase RAD18 is involved in post replication repair pathways via its recruitment to stalled replication forks, and its role in the ubiquitylation of proliferating cell nuclear antigen (PCNA). Recently, it has been reported that RAD18 is also recruited to DNA double strand break (DSB) sites, where it plays novel functions in the DNA damage response induced by ionizing radiation (IR). This new role is independent of PCNA ubiquitylation, but little is known about how RAD18 functions after IR exposure. Here, we describe a role for RAD18 in the IR-induced DNA damage signaling pathway at G2/M phase in the cell cycle. Depleting cells of RAD18 reduced the recruitment of the DNA damage signaling factors ATM, γH2AX, and 53BP1 to foci in cells at the G2/M phase after IR exposure, and attenuated activation of the G2/M checkpoint. Furthermore, depletion of RAD18 increased micronuclei formation and cell death following IR exposure, both in vitro and in vivo. Our data suggest that RAD18 can function as a mediator for DNA damage response signals to activate the G2/M checkpoint in order to maintain genome integrity and cell survival after IR exposure.  相似文献   
10.
Wnt signaling pathways are tightly regulated by ubiquitination, and dysregulation of these pathways promotes tumorigenesis. It has been reported that the ubiquitin ligase RNF43 plays an important role in frizzled-dependent regulation of the Wnt/β-catenin pathway. Here, we show that RNF43 suppresses both Wnt/β-catenin signaling and noncanonical Wnt signaling by distinct mechanisms. The suppression of Wnt/β-catenin signaling requires interaction between the extracellular protease-associated (PA) domain and the cysteine-rich domain (CRD) of frizzled and the intracellular RING finger domain of RNF43. In contrast, these N-terminal domains of RNF43 are not required for inhibition of noncanonical Wnt signaling, but interaction between the C-terminal cytoplasmic region of RNF43 and the PDZ domain of dishevelled is essential for this suppression. We further show the mechanism by which missense mutations in the extracellular portion of RNF43 identified in patients with tumors activate Wnt/β-catenin signaling. Missense mutations of RNF43 change their localization from the endosome to the endoplasmic reticulum (ER), resulting in the failure of frizzled-dependent suppression of Wnt/β-catenin signaling. However, these mutants retain the ability to suppress noncanonical Wnt signaling, probably due to interaction with dishevelled. RNF43 is also one of the potential target genes of Wnt/β-catenin signaling. Our results reveal the molecular role of RNF43 and provide an insight into tumorigenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号