首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   717篇
  免费   43篇
  2023年   2篇
  2022年   2篇
  2021年   16篇
  2020年   8篇
  2019年   14篇
  2018年   21篇
  2017年   14篇
  2016年   32篇
  2015年   33篇
  2014年   51篇
  2013年   41篇
  2012年   74篇
  2011年   68篇
  2010年   38篇
  2009年   25篇
  2008年   56篇
  2007年   52篇
  2006年   47篇
  2005年   36篇
  2004年   47篇
  2003年   21篇
  2002年   13篇
  2001年   12篇
  2000年   3篇
  1999年   2篇
  1998年   4篇
  1997年   3篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   1篇
  1990年   3篇
  1989年   2篇
  1988年   1篇
  1987年   2篇
  1984年   1篇
  1982年   2篇
  1979年   2篇
  1978年   1篇
  1977年   1篇
  1965年   1篇
排序方式: 共有760条查询结果,搜索用时 15 毫秒
141.
142.
Background:  The expression of a fragile histidine triad (FHIT) protein is lost in stomach tumors. The study aimed at determining whether FHIT expression is affected by Helicobacter pylori infection, strain virulence ( vacA and cagA genes) and histopathological changes in the gastric mucosa of patients with functional dyspepsia having first-degree relatives with gastric cancer.
Materials and Methods:  Eighty-eight never-smoking patients with functional dyspepsia were selected for the study, and 48 of them had first-degree relatives with gastric cancer. Bacterial DNA amplification was used to identify H. pylori colonization. The level of FHIT gene expression was determined by qRT-PCR (mRNA) and Western blot (FHIT protein) analyses.
Results:  For patients having first-degree relatives with gastric cancer FHIT expression was lower (mRNA by ca. 40–45% and protein by 30%) compared with the control patients ( p  < .05). H. pylori infection decreased the FHIT mRNA level by 10–35% and the protein level by 10–20%. Bacterial strain vacA (+) cagA (+) lowered FHIT mRNA by ca. 30–35% in the antrum samples of both groups and in corpus samples of patients with first-degree relatives with gastric cancer ( p  < .05). The FHIT mRNA level was twice as high in control H. pylori- negative patients with intestinal metaplasia, compared with those with non-atrophic gastritis.
Conclusions:  The decreased FHIT gene expression associated with hereditary factors and with H. pylori infection, especially with vacA (+) cagA (+)-positive strains, may be related to gastric carcinoma development.  相似文献   
143.
The Protein Structural Initiative (PSI) at the US National Institutes of Health (NIH) is funding four large-scale centers for structural genomics (SG). These centers systematically target many large families without structural coverage, as well as very large families with inadequate structural coverage. Here, we report a few simple metrics that demonstrate how successfully these efforts optimize structural coverage: while the PSI-2 (2005-now) contributed more than 8% of all structures deposited into the PDB, it contributed over 20% of all novel structures (i.e. structures for protein sequences with no structural representative in the PDB on the date of deposition). The structural coverage of the protein universe represented by today’s UniProt (v12.8) has increased linearly from 1992 to 2008; structural genomics has contributed significantly to the maintenance of this growth rate. Success in increasing novel leverage (defined in Liu et al. in Nat Biotechnol 25:849–851, 2007) has resulted from systematic targeting of large families. PSI’s per structure contribution to novel leverage was over 4-fold higher than that for non-PSI structural biology efforts during the past 8 years. If the success of the PSI continues, it may just take another ~15 years to cover most sequences in the current UniProt database.  相似文献   
144.
Abstract  Bottlenecks in expression, solubilization, purification and crystallization hamper the structural study of integral membrane proteins (IMPs). Successful crystallization is critically dependent on the purity, stability and oligomeric homogeneity of an IMP sample. These characteristics are in turn strongly influenced by the type and concentration of the detergents used in IMP preparation. By utilizing the techniques and analytical tools we earlier developed for the characterization of protein-detergent complexes (PDCs) [21], we demonstrate that for successful protein extraction from E. coli membrane fractions, the solubilizing detergent associates preferentially to IMPs rather than to membrane lipids. Notably, this result is contrary to the generally accepted mechanism of detergent-mediated IMP solubilization. We find that for one particular member of the family of proteins studied (E. coli receptor kinases, which is purified in mixed multimeric states and oligomerizes through its transmembrane region), the protein oligomeric composition is largely unaffected by a 10-fold increase in protein concentration, by alteration of micelle properties through addition of other detergents to the PDC sample, or by a 20-fold variation in the detergent concentration used for solubilization of the IMP from the membrane. We observed that the conditions used for expression of the IMP, which impact protein density in the membrane, has the greatest influence on the IMP oligomeric structure. Finally, we argue that for concentrating PDCs smaller than 30 kDa, stirred concentration cells are less prone to over-concentration of detergent and are therefore more effective than centrifugal ultrafiltration devices.  相似文献   
145.

Background

Shape complementarity and non-covalent interactions are believed to drive protein-ligand interaction. To date protein-protein, protein-DNA, and protein-RNA interactions were systematically investigated, which is in contrast to interactions with small ligands. We investigate the role of covalent and non-covalent bonds in protein-small ligand interactions using a comprehensive dataset of 2,320 complexes.

Methodology and Principal Findings

We show that protein-ligand interactions are governed by different forces for different ligand types, i.e., protein-organic compound interactions are governed by hydrogen bonds, van der Waals contacts, and covalent bonds; protein-metal ion interactions are dominated by electrostatic force and coordination bonds; protein-anion interactions are established with electrostatic force, hydrogen bonds, and van der Waals contacts; and protein-inorganic cluster interactions are driven by coordination bonds. We extracted several frequently occurring atomic-level patterns concerning these interactions. For instance, 73% of investigated covalent bonds were summarized with just three patterns in which bonds are formed between thiol of Cys and carbon or sulfur atoms of ligands, and nitrogen of Lys and carbon of ligands. Similar patterns were found for the coordination bonds. Hydrogen bonds occur in 67% of protein-organic compound complexes and 66% of them are formed between NH- group of protein residues and oxygen atom of ligands. We quantify relative abundance of specific interaction types and discuss their characteristic features. The extracted protein-organic compound patterns are shown to complement and improve a geometric approach for prediction of binding sites.

Conclusions and Significance

We show that for a given type (group) of ligands and type of the interaction force, majority of protein-ligand interactions are repetitive and could be summarized with several simple atomic-level patterns. We summarize and analyze 10 frequently occurring interaction patterns that cover 56% of all considered complexes and we show a practical application for the patterns that concerns interactions with organic compounds.  相似文献   
146.

Background

Many ion channels are preferentially located in caveolae where compartmentalisation/scaffolding with signal transduction components regulates their activity. Channels that are mechanosensitive may be additionally dependent on caveolar control of the mechanical state of the membrane. Here we test which mechanism underlies caveolar-regulation of the mechanosensitive I Cl,swell channel in the adult cardiac myocyte.

Methodology/Principal Findings

Rat ventricular myocytes were exposed to solution of 0.02 tonicity (T; until lysis), 0.64T for 10–15 min (swelling), and/or methyl-β-cyclodextrin (MBCD; to disrupt caveolae). MBCD and 0.64T swelling reduced the number of caveolae visualised by electron microscopy by 75 and 50% respectively. MBCD stimulated translocation of caveolin 3 from caveolae-enriched buoyant membrane fractions, but both caveolin 1 and 3 remained in buoyant fractions after swelling. I Cl,swell inhibition in control cells decreased time to half-maximal volume (t 0.5,vol; 0.64T), consistent with a role for I Cl,swell in volume regulation. MBCD-treated cells showed reduced time to lysis (0.02T) and t 0.5,vol (0.64T) compared with controls. The negative inotropic response to swelling (an index of I Cl,swell activation) was enhanced by MBCD.

Conclusions/Significance

These data show that disrupting caveolae removes essential membrane reserves, which speeds swelling in hyposmotic conditions, and thereby promotes activation of I Cl,swell. They illustrate a general principle whereby caveolae as a membrane reserve limit increases in membrane tension during stretch/swelling thereby restricting mechanosensitive channel activation.  相似文献   
147.
Using Meta-BASIC, a highly sensitive method for detection of distant similarity between proteins, we have identified another potential PD-(D/E)XK endonuclease in human herpesvirus 1 (HHV-1) encoded by the UL24 gene. The universal presence of UL24 in completed herpesviral genomes of three major subfamilies, Alphaherpesvirinae, Betaherpesvirinae, and Gammaherpesvirinae, suggests a fundamental role for this predicted PD-(D/E)XK endonuclease activity in the viral life cycle.  相似文献   
148.
149.
150.
The mechanism of the dehalogenation step catalyzed by dehaloperoxidase (DHP) from Amphitrite ornata, an unusual heme-containing protein with a globin fold and peroxidase activity, has remarkable similarity with that of the classical heme peroxidase, horseradish peroxidase (HRP). Based on quantum mechanical/molecular mechanical (QM/MM) modeling and experimentally determined chlorine kinetic isotope effects, we have concluded that two sequential one electron oxidations of the halogenated phenol substrate leads to a cationic intermediate that strongly resembles a Meisenheimer intermediate – a commonly formed reactive complex during nucleophilic aromatic substitution reactions especially in the case of arenes carrying electron withdrawing groups.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号