首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   65篇
  免费   6篇
  2021年   3篇
  2019年   1篇
  2018年   4篇
  2015年   1篇
  2014年   8篇
  2013年   2篇
  2012年   10篇
  2011年   11篇
  2010年   5篇
  2009年   6篇
  2008年   6篇
  2007年   3篇
  2006年   4篇
  2005年   3篇
  2004年   3篇
  2002年   1篇
排序方式: 共有71条查询结果,搜索用时 18 毫秒
1.
2.
The common gastrointestinal pathogens enteropathogenic Escherichia coli (EPEC) and Salmonella typhimurium both reorganize the gut epithelial cell actin cytoskeleton to mediate pathogenesis, utilizing mimicry of the host signaling apparatus. The PDZ domain-containing protein Shank3, is a large cytoskeletal scaffold protein with known functions in neuronal morphology and synaptic signaling, and is also capable of acting as a scaffolding adaptor during Ret tyrosine kinase signaling in epithelial cells. Using immunofluorescent and functional RNA-interference approaches we show that Shank3 is present in both EPEC- and S. typhimurium-induced actin rearrangements and is required for optimal EPEC pedestal formation. We propose that Shank3 is one of a number of host synaptic proteins likely to play key roles in bacteria-host interactions.  相似文献   
3.
The application of live cell imaging allows direct visualization of the dynamic interactions between cells of the immune system. Some preliminary observations challenge long-held beliefs about immune responses to microorganisms; however, the lack of spatial and temporal control between the phagocytic cell and microbe has rendered focused observations into the initial interactions of host response to pathogens difficult. This paper outlines a method that advances live cell imaging by integrating a spinning disk confocal microscope with an optical trap, also known as an optical tweezer, in order to provide exquisite spatial and temporal control of pathogenic organisms and place them in proximity to host cells, as determined by the operator. Polymeric beads and live, pathogenic organisms (Candida albicans and Aspergillus fumigatus) were optically trapped using non-destructive forces and moved adjacent to living cells, which subsequently phagocytosed the trapped particle. High resolution, transmitted light and fluorescence-based movies established the ability to observe early events of phagocytosis in living cells. To demonstrate the broad applicability of this method to immunological studies, anti-CD3 polymeric beads were also trapped and manipulated to form synapses with T cells in vivo, and time-lapse imaging of synapse formation was also obtained. By providing a method to exert fine control of live pathogens with respect to immune cells, cellular interactions can be captured by fluorescence microscopy with minimal perturbation to cells and can yield powerful insight into early responses of innate and adaptive immunity.  相似文献   
4.
Extensive alterations in cellular organization are known to accompany the responses of sensitized T cells to target cells presenting an antigen of interest. Now, equally if not more dramatic changes are found to take place in cells presenting an antigen. With the help of a spinophilin-GFP fusion protein, Bloom et al. (Bloom, O., J.J. Unternaehrer, A. Jiang, J.-S. Shin, L. Delamarre, P. Allen, and I. Mellman. 2008. J. Cell Biol. 181:203-211) have captured a remarkable polarization of the cellular architecture of dendritic cells presenting an antigen to T cells.  相似文献   
5.
Src family kinases (SFK) control multiple processes during brain development and function. We show here that the phosphoprotein associated with glycosphigolipid-enriched microdomains (PAG)/Csk binding protein (Cbp) modulates SFK activity in the brain. The timing and localization of PAG expression overlap with Fyn and Src, both of which we find associated to PAG. We demonstrate in newborn (P1) mice that PAG negatively regulates Src family kinases (SFK). P1 Pag1 -/- mouse brains show decreased recruitment of Csk into lipid rafts, reduced phosphorylation of the inhibitory tyrosines within SFKs, and an increase in SFK activity of >/ = 50%. While in brain of P1 mice, PAG and Csk are highly and ubiquitously expressed, little Csk is found in adult brain suggesting altered modes of SFK regulation. In adult brain Pag1-deficiency has no effect upon Csk-distribution or inhibitory tyrosine phosphorylation, but kinase activity is now reduced (−20–30%), pointing to the development of a compensatory mechanism that may involve PSD93. The distribution of the Csk-homologous kinase CHK is not altered. Importantly, since the activities of Fyn and Src are decreased in adult Pag1 -/- mice, thus presenting the reversed phenotype of P1, this provides the first in vivo evidence for a Csk-independent positive regulatory function for PAG in the brain.  相似文献   
6.
Ng A  Xavier RJ 《Autophagy》2011,7(9):1082-1084
The leucine-rich repeats (LRR)-containing domain is evolutionarily conserved in many proteins associated with innate immunity in plants, invertebrates and vertebrates. Serving as a first line of defense, the innate immune response is initiated through the sensing of pathogen-associated molecular patterns (PAMPs). In plants, NBS (nucleotide-binding site)-LRR proteins provide recognition of pathogen products of avirulence (AVR) genes. LRRs also promote interaction between LRR proteins as observed in receptor-coreceptor complexes. In mammals, toll-like receptors (TLRs) and NOD-like receptors (NLRs) through their LRR domain, sense molecular determinants from a structurally diverse set of bacterial, fungal, parasite and viral-derived components. In humans, at least 34 LRR proteins are implicated in diseases. Most LRR domains consist of 2-45 leucine-rich repeats, with each repeat about 20-30 residues long. Structurally, LRR domains adopt an arc or horseshoe shape, with the concave face consisting of parallel β-strands and the convex face representing a more variable region of secondary structures including helices. Apart from the TLRs and NLRs, most of the 375 human LRR proteins remain uncharacterized functionally. We incorporated computational and functional analyses to facilitate multifaceted insights into human LRR proteins and outline a few approaches here.  相似文献   
7.
The connector enhancer of KSR (CNK) is a multidomain scaffold protein discovered in Drosophila, where it is necessary for Ras activation of the Raf kinase. Recent studies have shown that CNK1 also interacts with RalA and Rho and participates in some aspects of signaling by these GTPases. Herein we demonstrate a novel aspect of CNK1 function, i.e. reexpression of CNK1 suppresses tumor cell growth and promotes apoptosis. As shown previously for apoptosis induced by Ki-Ras(G12V), CNK1-induced apoptosis is suppressed by a dominant inhibitor of the mammalian sterile 20 kinases 1 and (MST1/MST2). Immunoprecipitates of MST1 endogenous to LoVo colon cancer cells contain endogenous CNK1; however, no association of these two polypeptides can be detected in a yeast two-hybrid assay. CNK1 does, however, bind directly to the RASSF1A and RASSF1C polypeptides, constitutive binding partners of the MST1/2 kinases. Deletion of the MST1 carboxyl-terminal segment that mediates its binding to RASSF1A/C eliminates the association of MST1 with CNK1. Coexpression of CNK1 with the tumor suppressive isoform, RASSF1A, greatly augments CNK1-induced apoptosis, whereas the nonsuppressive RASSF1C isoform is without effect on CNK1-induced apoptosis. Overexpression of CNK1-(1-282), a fragment that binds RASSF1A but is not proapoptotic, blocks the apoptosis induced by CNK1 and by Ki-Ras(G12V). Thus, in addition to its positive role in the proliferative outputs of active Ras, the CNK1 scaffold protein, through its binding of a RASSF1A.MST complex, also participates in the proapoptotic signaling initiated by active Ras.  相似文献   
8.
Identification of a novel Ras-regulated proapoptotic pathway   总被引:34,自引:0,他引:34  
BACKGROUND: The Ras-GTPase controls cell fate decisions through the binding of an array of effector molecules, such as Raf and PI 3-kinase, in a GTP-dependent manner. NORE1, a noncatalytic polypeptide, binds specifically to Ras-GTP and to several other Ras-like GTPases. NORE is homologous to the putative tumor suppressor RASSF1 and to the Caenorhabditis elegans polypeptide T24F1.3. RESULTS: We find that all three NORE-related polypeptides bind selectively to the proapoptotic protein kinase MST1, a member of the Group II GC kinases. Endogenous NORE and MST1 occur in a constitutive complex in vivo that associates with endogenous Ras after serum stimulation. Targeting recombinant MST1 to the membrane, either through NORE or myristoylation, augments the apoptotic efficacy of MST1. Overexpression of constitutively active Ki-RasG12V promotes apoptosis in a variety of cell lines; Ha-RasG12V is a much less potent proapoptotic agent; however, a Ha-RasG12V effector loop mutant (E37G) that binds NORE, but not Raf or PI 3-kinase, exhibits proapoptotic efficacy approaching that of Ki-RasG12V. The apoptotic action of both Ki-RasG12V and Ha-RasG12V, E37G is suppressed by overexpression of the MST1 carboxy-terminal noncatalytic segment or by the NORE segment that binds MST1. CONCLUSIONS: MST1 is a phylogenetically conserved partner of the NORE/RASSF polypeptide family, and the NORE-MST1 complex is a novel Ras effector unit that mediates the apoptotic effect of Ki-RasG12V.  相似文献   
9.
10.
Host resistance to viral infection requires type I (α/β) and II (γ) interferon (IFN) production. Another important defense mechanism is the degradative activity of macroautophagy (herein autophagy), mediated by the coordinated action of evolutionarily conserved autophagy proteins (Atg). We show that the Atg5-Atg12/Atg16L1 protein complex, whose prior known function is in autophagosome formation, is required for IFNγ-mediated host defense against murine norovirus (MNV) infection. Importantly, the direct antiviral activity of IFNγ against MNV in macrophages required Atg5-Atg12, Atg7, and Atg16L1, but not induction of autophagy, the degradative activity of lysosomal proteases, fusion of autophagosomes and lysosomes, or the Atg8-processing protein Atg4B. IFNγ, via Atg5-Atg12/Atg16L1, inhibited formation of the membranous cytoplasmic MNV replication complex, where Atg16L1 localized. Thus, the Atg5-Atg12/Atg16L1 complex performs a pivotal, nondegradative role in IFNγ-mediated antiviral defense, establishing that multicellular organisms have evolved to use portions of the autophagy pathway machinery in a cassette-like fashion for host defense.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号