首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7676篇
  免费   790篇
  国内免费   910篇
  2024年   21篇
  2023年   91篇
  2022年   164篇
  2021年   429篇
  2020年   318篇
  2019年   401篇
  2018年   405篇
  2017年   294篇
  2016年   360篇
  2015年   558篇
  2014年   656篇
  2013年   600篇
  2012年   759篇
  2011年   672篇
  2010年   408篇
  2009年   414篇
  2008年   465篇
  2007年   374篇
  2006年   317篇
  2005年   264篇
  2004年   195篇
  2003年   213篇
  2002年   198篇
  2001年   110篇
  2000年   96篇
  1999年   76篇
  1998年   52篇
  1997年   56篇
  1996年   51篇
  1995年   54篇
  1994年   42篇
  1993年   30篇
  1992年   33篇
  1991年   35篇
  1990年   25篇
  1989年   22篇
  1988年   15篇
  1987年   14篇
  1986年   11篇
  1985年   9篇
  1984年   8篇
  1983年   11篇
  1982年   4篇
  1981年   4篇
  1978年   4篇
  1973年   5篇
  1971年   4篇
  1970年   4篇
  1969年   4篇
  1966年   3篇
排序方式: 共有9376条查询结果,搜索用时 140 毫秒
941.
942.
Global warming is one of the most serious challenges facing us today. It may be linked to the increase in atmospheric CO2 and other greenhouse gases (GHGs), leading to a rise in sea level, notable shifts in ecosystems, and in the frequency and intensity of wild fires. There is a strong interest in stabilizing the atmospheric concentration of CO2 and other GHGs by decreasing carbon emission and/or increasing carbon sequestration. Biotic sequestration is an important and effective strategy to mitigate the effects of rising atmospheric CO2 concentrations by increasing carbon sequestration and storage capacity of ecosystems using plant photosynthesis and by decreasing carbon emission using biofuel rather than fossil fuel. Improvement of photosynthetic carbon assimilation, using transgenic engineering, potentially provides a set of available and effective tools for enhancing plant carbon sequestration. In this review, firstly different biological methods of CO2 assimilation in C3, C4 and CAM plants are introduced and three types of C4 pathways which have high photosynthetic performance and have evolved as CO2 pumps are briefly summarized. Then (i) the improvement of photosynthetic carbon assimilation of C3 plants by transgenic engineering using non-C4 genes, and (ii) the overexpression of individual or multiple C4 cycle photosynthetic genes (PEPC, PPDK, PCK, NADP-ME and NADP-MDH) in transgenic C3 plants (e.g. tobacco, potato, rice and Arabidopsis) are highlighted. Some transgenic C3 plants (e.g. tobacco, rice and Arabidopsis) overexpressing the FBP/SBPase, ictB and cytochrome c6 genes showed positive effects on photosynthetic efficiency and growth characteristics. However, over the last 28 years, efforts to overexpress individual, double or multiple C4 enzymes in C3 plants like tobacco, potato, rice, and Arabidopsis have produced mixed results that do not confirm or eliminate the possibility of improving photosynthesis of C3 plants by this approach. Finally, a prospect is provided on the challenges of enhancing carbon assimilation of C3 plants using transgenic engineering in the face of global warming, and the trends of the most promising approaches to improving the photosynthetic performance of C3 plants.  相似文献   
943.
Song XL  Li B  Xu K  Liu J  Ju W  Wang J  Liu XD  Li J  Qi YF 《Cell biology and toxicology》2012,28(4):225-237
Silver nanoparticles (AgNPs) are being used widely and increasingly in various products and medical supplies due to their antibacterial activity. However, little is known about the impacts of the AgNPs. Herein, The primary purpose of this study was to investigate the cytotoxic effect of AgNPs in the human liver cell line (HL-7702). The water-soluble α-Methoxy-poly (ethylene glycol)-ω-mercapto (mPEG-SH)-coated AgNPs (40 nm) were synthesized, which showed superior stabilization and uniform dispersion in culture medium. The effect of mPEG-SH-coated silver nanoparticles on cell viability, leakage of lactate dehydrogenase (LDH), oxidative stress, mitochondrial membrane potential (MMP), and cell cycle was evaluated after the cells were treated with nanoparticles. The results showed that the coated AgNPs could be taken up by cells, decreased cell viability in dose- and time-dependent manners at dosage levels between 6.25 and 100.00 μg/mL, caused membrane damage (LDH leakage), and decreased the activities of superoxide dismutase and glutathione peroxides. The level of malondialdehyde, an end product of lipid peroxidation, was also increased in AgNPs-exposed cells. Moreover, flow cytometric analysis showed that AgNP exposure decrease MMP and cause G?/M phase arrest. Thus, our data suggest that mPEG-SH-coated AgNPs have the potential toxicity that is associated with oxidative stress, apoptosis, and DNA damage.  相似文献   
944.
945.
946.
947.
948.
949.
It is well recognized that ANG II interacts with arginine vasopressin (AVP) to regulate water reabsorption and urine concentration in the kidney. The present study used ANG II type 1a (AT(1a)) receptor-deficient (Agtr1a(-/-)) mice to test the hypothesis that AT(1a) receptor signaling is required for basal and water deprivation-induced urine concentration in the renal medulla. Eight groups of wild-type (WT) and Agtr1a(-/-) mice were treated with or without 24-h water deprivation and 1-desamino-8-d-AVP (DDAVP; 100 ng/h ip) for 2 wk or with losartan (10 mg/kg ip) during water deprivation. Under basal conditions, Agtr1a(-/-) mice had lower systolic blood pressure (P < 0.01), greater than threefold higher 24-h urine excretion (WT mice: 1.3 ± 0.1 ml vs. Agtr1a(-/-) mice: 5.9 ± 0.7 ml, P < 0.01), and markedly decreased urine osmolality (WT mice: 1,834 ± 86 mosM/kg vs. Agtr1a(-/-) mice: 843 ± 170 mosM/kg, P < 0.01), without significant changes in 24-h urinary Na(+) excretion. These responses in Agtr1a(-/-) mice were associated with lower basal plasma AVP (WT mice: 105 ± 8 pg/ml vs. Agtr1a(-/-) mice: 67 ± 6 pg/ml, P < 0.01) and decreases in total lysate and membrane aquaporin-2 (AQP2; 48.6 ± 7% of WT mice, P < 0.001) and adenylyl cyclase isoform III (55.6 ± 8% of WT mice, P < 0.01) proteins. Although 24-h water deprivation increased plasma AVP to the same levels in both strains, 24-h urine excretion was still higher, whereas urine osmolality remained lower, in Agtr1a(-/-) mice (P < 0.01). Water deprivation increased total lysate AQP2 proteins in the inner medulla but had no effect on adenylyl cyclase III, phosphorylated MAPK ERK1/2, and membrane AQP2 proteins in Agtr1a(-/-) mice. Furthermore, infusion of DDAVP for 2 wk was unable to correct the urine-concentrating defects in Agtr1a(-/-) mice. These results demonstrate that AT(1a) receptor-mediated ANG II signaling is required to maintain tonic AVP release and regulate V(2) receptor-mediated responses to water deprivation in the inner medulla.  相似文献   
950.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号