首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   143723篇
  免费   23481篇
  国内免费   8362篇
  2024年   163篇
  2023年   1419篇
  2022年   2008篇
  2021年   6217篇
  2020年   5777篇
  2019年   8070篇
  2018年   8086篇
  2017年   7274篇
  2016年   8787篇
  2015年   10994篇
  2014年   12058篇
  2013年   12970篇
  2012年   12701篇
  2011年   11310篇
  2010年   8884篇
  2009年   6952篇
  2008年   6990篇
  2007年   5927篇
  2006年   5254篇
  2005年   4176篇
  2004年   3731篇
  2003年   3227篇
  2002年   2876篇
  2001年   2496篇
  2000年   2242篇
  1999年   2140篇
  1998年   1168篇
  1997年   1229篇
  1996年   1099篇
  1995年   983篇
  1994年   993篇
  1993年   714篇
  1992年   1042篇
  1991年   885篇
  1990年   637篇
  1989年   601篇
  1988年   514篇
  1987年   432篇
  1986年   407篇
  1985年   405篇
  1984年   222篇
  1983年   213篇
  1982年   148篇
  1981年   125篇
  1980年   113篇
  1979年   128篇
  1978年   86篇
  1977年   63篇
  1974年   80篇
  1972年   62篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
51.
DC‐UbP/UBTD2 is a ubiquitin (Ub) domain‐containing protein first identified from dendritic cells, and is implicated in ubiquitination pathway. The solution structure and backbone dynamics of the C‐terminal Ub‐like (UbL) domain were elucidated in our previous work. To further understand the biological function of DC‐UbP, we then solved the solution structure of the N‐terminal domain of DC‐UbP (DC‐UbP_N) and studied its Ub binding properties by NMR techniques. The results show that DC‐UbP_N holds a novel structural fold and acts as a Ub‐binding domain (UBD) but with low affinity. This implies that the DC‐UbP protein, composing of a combination of both UbL and UBD domains, might play an important role in regulating protein ubiquitination and delivery of ubiquitinated substrates in eukaryotic cells.  相似文献   
52.
Land‐cover change can alter the spatiotemporal distribution of water inputs to mountain ecosystems, an important control on land‐surface and land‐atmosphere hydrologic fluxes. In eastern Mexico, we examined the influence of three widespread land‐cover types, montane cloud forest, coffee agroforestry, and cleared areas, on total and net water inputs to soil. Stand structural characteristics, as well as rain, fog, stemflow, and throughfall (water that falls through the canopy) water fluxes were measured across 11 sites during wet and dry seasons from 2005 to 2008. Land‐cover type had a significant effect on annual and seasonal net throughfall (NTF <0=canopy water retention plus canopy evaporation; NTF >0=fog water deposition). Forest canopies retained and/or lost to evaporation (i.e. NTF<0) five‐ to 11‐fold more water than coffee agroforests. Moreover, stemflow was fourfold higher under coffee shade than forest trees. Precipitation seasonality and phenological patterns determined the magnitude of these land‐cover differences, as well as their implications for the hydrologic cycle. Significant negative relationships were found between NTF and tree leaf area index (R2=0.38, P<0.002), NTF and stand basal area (R2=0.664, P<0.002), and stemflow and epiphyte loading (R2=0.414, P<0.001). These findings indicate that leaf and epiphyte surface area reductions associated with forest conversion decrease canopy water retention/evaporation, thereby increasing throughfall and stemflow inputs to soil. Interannual precipitation variability also altered patterns of water redistribution across this landscape. Storms and hurricanes resulted in little difference in forest‐coffee wet season NTF, while El Niño Southern Oscillation was associated with a twofold increase in dry season rain and fog throughfall water deposition. In montane headwater regions, changes in water delivery to canopies and soils may affect infiltration, runoff, and evapotranspiration, with implications for provisioning (e.g. water supply) and regulating (e.g. flood mitigation) ecosystem services.  相似文献   
53.
54.
COVID-19, caused by SARS-CoV-2, is an acute and rapidly developing pandemic, which leads to a global health crisis. SARS-CoV-2 primarily attacks human alveoli and causes severe lung infection and damage. To better understand the molecular basis of this disease, we sought to characterize the responses of alveolar epithelium and its adjacent microvascular endothelium to viral infection under a co-culture system. SARS-CoV-2 infection caused massive virus replication and dramatic organelles remodeling in alveolar epithelial cells, alone. While, viral infection affected endothelial cells in an indirect manner, which was mediated by infected alveolar epithelium. Proteomics analysis and TEM examinations showed viral infection caused global proteomic modulations and marked ultrastructural changes in both epithelial cells and endothelial cells under the co-culture system. In particular, viral infection elicited global protein changes and structural reorganizations across many sub-cellular compartments in epithelial cells. Among the affected organelles, mitochondrion seems to be a primary target organelle. Besides, according to EM and proteomic results, we identified Daurisoline, a potent autophagy inhibitor, could inhibit virus replication effectively in host cells. Collectively, our study revealed an unrecognized cross-talk between epithelium and endothelium, which contributed to alveolar–capillary injury during SARS-CoV-2 infection. These new findings will expand our understanding of COVID-19 and may also be helpful for targeted drug development.Subject terms: Mechanisms of disease, Viral infection  相似文献   
55.
Following arteriolar occlusion, tissue oxygen concentration decreases and anoxic tissue eventually develops. Although anoxia first appears in the region most distal to the capillary at the venous end, it eventually spreads throughout the entire region of supply. In this paper the changing oxygen concentration, from the time of occlusion until the tissue is entirely anoxic, is examined mathematically. The equations governing oxygen transport to tissue are solved by iterating a nonlinear integral equation. This solution is valid until anoxia first appears. After anoxia develops it is necessary to solve a moving boundary problem. This is done using the method of matched asymptotic expansions, and accurate solutions are obtained for a wide range of physiological conditions.  相似文献   
56.
Insulin receptors of rat skeletal muscle were purified by first extracting a plasma membrane-enriched pellet obtained from a muscle homogenate with Triton X-100, followed by WGA-Sepharose and insulin-Sepharose affinity chromatography. Routinely, 4-5 micrograms of purified receptor were obtained from 15 g of tissue. The purified receptors are composed of two major polypeptides with molecular weights of 130,000 and 95,000, respectively. The binding of [125I]insulin by the purified receptors was analyzed by a Scatchard plot. There are at least two binding components. The high-affinity component, with an apparent association constant (Ka) of 2.0 X 10(9) M-1, comprises 10% of the total insulin binding sites; while the low-affinity component, with a Ka value of 1.4 X 10(8) M-1, represents 90% of the binding sites. Assuming the insulin receptor to have a molecular weight of 300,000, the receptor binds 1.7 mol of insulin per mol at saturation. Insulin is capable of stimulating the autophosphorylation of the beta-subunit of the muscle insulin receptor (Mr 95,000) by 5-10-fold. The stoichiometry of this phosphorylation reaction was determined as 0.8 phosphate per insulin binding site after a 10 min incubation with 100 nM insulin. In a previous report, I showed that the insulin stimulation of glucose transport in diaphragms from neonatal rats was small, even although the diaphragms had normal levels of insulin receptors and glucose transporters (Wang, C. (1985). Proc. Natl. Acad. Sci. USA 82, 3621-3625). To determine whether or not receptor autophosphorylation might be related to this insensitivity to insulin, the level of receptor phosphorylation was quantitated in diaphragms from rats at different stages of development. Autophosphorylation remains unchanged from birth to 21 days of age, suggesting that the lower insulin-stimulated glucose uptake by diaphragms at early stages of postnatal development as compared to that by diaphragms of older rats, is not due to a difference in receptor kinase.  相似文献   
57.
58.
A new species, Galearis huanglongensis Q.W.Meng & Y.B.Luo, is described and illustrated. It is similar to Galearis cyclochila (Franch. & Sav.) Soó and Galearis diantha (Schltr.) P.F.Hunt, but differs in having a short spur, two elliptical lateral stigma lobes and distinctly separated bursicles. This new species is known only from the type locality, the Huanglong Valley, Songpan County, western Sichuan, China, growing amongst mosses under alpine shrubs at an elevation of about 3000 m. Based on two years of observations of its population size, the species was categorized as critically endangered CR (B1a, B2a) according to the World Conservation Union (IUCN) Red List Categories and Criteria, Version 3.1. The micromorphology of pollinia and seeds was observed by scanning electron microscopy and compared with that of G. cyclochila and G. diantha. The results supported G. huanglongensis Q.W.Meng & Y.B.Luo as a new species. © 2008 The Linnean Society of London, Botanical Journal of the Linnean Society, 2008, 158 , 689–695.  相似文献   
59.
马勇  凌旋  童昀 《生态学报》2021,41(19):7542-7554
以典型旅游城市三亚市为案例地,利用2006-2018年4期Landsat遥感影像数据,借助ENVI、ArcGIS平台定量识别土地利用演变特征,在1km×1km格网尺度下估算旅游地生态系统服务价值,并结合空间探索性数据分析揭示生态系统服务价值时空分异特征及其与旅游地发展的时空耦合关系。结果表明:(1)2006-2018年间,三亚市生态系统服务价值总量呈逐年下降趋势,由6.73×109元降至5.76×109元,累计减少9.78×108元;(2)空间格局上,三亚市呈"南低北高"空间分异格局,2006-2018年增值区域连片分布于崖州区、天涯区、吉阳区南部区域,且呈逐年减少趋势,减值区域集聚于天涯区东北部、海棠区;(3)空间集聚上,生态系统服务价值截面各年份均呈显著空间正相关且相关性先降后增。高高集聚区位于天涯区北部区域,低低集聚区分布于沿海、海湾地区;(4)旅游发展与生态系统服务价值时空演化特征关联性较强。三亚市天涯区北部林地生态环境良好,生态系统服务价值略有下降但绝对数值稳定,是生态系统服务价值主要来源;旅游发展较为迅速的三亚湾、崖州湾以及海棠湾,相对增值区域较多,但绝对生态系统服务价值损失显著,严重滞后于其他区域。  相似文献   
60.
Gray Flycatchers (Empidonax wrightii) breed in a variety of habitats in the arid and semi‐arid regions of the western United States, but little is known about their breeding biology, especially in the northern portion of their range where they nest in ponderosa pine (Pinus ponderosa) forests. From May to July 2014 and 2015, we conducted surveys for singing male Gray Flycatchers along the eastern slope of the Cascade Range in Washington, U.S.A, monitored flycatcher nests, and quantified nest‐site vegetation. We used a logistic‐exposure model fit within a Bayesian framework to model the daily survival probability of flycatcher nests. During the 2 yr of our study, we monitored 141 nests, with 93% in ponderosa pines. Mean clutch size was 3.6 eggs and the mean number of young fledged per nest was 3.2. Predation accounted for 90% of failed nests. We found a positive association between daily nest survival and both nest height and distance of nest substrates from the nearest tree. Flycatchers that locate their nests higher above the ground and further from adjacent trees may be choosing the safest alternative because higher nests may be less exposed to terrestrial predators and nests in trees that are farther from other trees may be less exposed to arboreal predators such as jays (Corvidae) that may forage in patches with connected canopies. Nests in trees farther from other trees may also allow earlier detection of approaching predators and thus aid in nest defense.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号