首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Purification and autophosphorylation of insulin receptors from rat skeletal muscle
Authors:C Wang
Abstract:Insulin receptors of rat skeletal muscle were purified by first extracting a plasma membrane-enriched pellet obtained from a muscle homogenate with Triton X-100, followed by WGA-Sepharose and insulin-Sepharose affinity chromatography. Routinely, 4-5 micrograms of purified receptor were obtained from 15 g of tissue. The purified receptors are composed of two major polypeptides with molecular weights of 130,000 and 95,000, respectively. The binding of 125I]insulin by the purified receptors was analyzed by a Scatchard plot. There are at least two binding components. The high-affinity component, with an apparent association constant (Ka) of 2.0 X 10(9) M-1, comprises 10% of the total insulin binding sites; while the low-affinity component, with a Ka value of 1.4 X 10(8) M-1, represents 90% of the binding sites. Assuming the insulin receptor to have a molecular weight of 300,000, the receptor binds 1.7 mol of insulin per mol at saturation. Insulin is capable of stimulating the autophosphorylation of the beta-subunit of the muscle insulin receptor (Mr 95,000) by 5-10-fold. The stoichiometry of this phosphorylation reaction was determined as 0.8 phosphate per insulin binding site after a 10 min incubation with 100 nM insulin. In a previous report, I showed that the insulin stimulation of glucose transport in diaphragms from neonatal rats was small, even although the diaphragms had normal levels of insulin receptors and glucose transporters (Wang, C. (1985). Proc. Natl. Acad. Sci. USA 82, 3621-3625). To determine whether or not receptor autophosphorylation might be related to this insensitivity to insulin, the level of receptor phosphorylation was quantitated in diaphragms from rats at different stages of development. Autophosphorylation remains unchanged from birth to 21 days of age, suggesting that the lower insulin-stimulated glucose uptake by diaphragms at early stages of postnatal development as compared to that by diaphragms of older rats, is not due to a difference in receptor kinase.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号