首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   15759篇
  免费   1567篇
  国内免费   2篇
  2024年   12篇
  2023年   86篇
  2022年   113篇
  2021年   380篇
  2020年   235篇
  2019年   273篇
  2018年   326篇
  2017年   296篇
  2016年   511篇
  2015年   967篇
  2014年   934篇
  2013年   1139篇
  2012年   1490篇
  2011年   1416篇
  2010年   900篇
  2009年   773篇
  2008年   1008篇
  2007年   1002篇
  2006年   967篇
  2005年   913篇
  2004年   870篇
  2003年   757篇
  2002年   694篇
  2001年   124篇
  2000年   78篇
  1999年   120篇
  1998年   139篇
  1997年   79篇
  1996年   71篇
  1995年   57篇
  1994年   56篇
  1993年   53篇
  1992年   39篇
  1991年   51篇
  1990年   35篇
  1989年   21篇
  1988年   36篇
  1987年   20篇
  1986年   23篇
  1985年   27篇
  1984年   21篇
  1983年   19篇
  1982年   22篇
  1981年   15篇
  1980年   17篇
  1978年   14篇
  1977年   16篇
  1974年   15篇
  1971年   9篇
  1970年   9篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
991.
The airline industry has a strong interest in developing sustainable aviation fuels, in order to reduce their exposure to increasing oil prices and cost liability for greenhouse gas emissions. The feasibility and cost of producing sustainable biomass‐based jet fuels at a sufficient scale to materially address these issues is an enormous challenge. This paper builds directly on the biophysical study by H.T. Murphy, D.A. O'Connell, R.J. Raison, A.C. Warden, T.H. Booth, A. Herr, A.L. Braid, D.F. Crawford, J.A. Hayward, T. Javonovic, J.G. McIvor, M.H. O'Connor, M.L. Poole, D. Prestwidge, N. Raisbeck‐Brown & L. Rye, In review, which examined a 25 year scale‐up strategy to produce 5% of projected jet fuel demand in Australia in 2020 (470 mL) in the Fitzroy region of Queensland, Australia. The strategy was based on the use of a mixed ligno‐cellulosic biomass feedstock and assumed, for the sake of exploring and quantifying the scenario, a simplified two‐step conversion process – conversion of biomass to crude bio‐oil within the region, and upgrade to jet fuel at a central Brisbane facility. This paper provides details on the costs of production in this scenario, focusing on two different strategies for biomass utilization, and two types of novel small–medium scale conversion technologies. The cost analyses have taken into account technology learning curves, different economies of scale and key cost sensitivities. The cost of biomass‐based jet fuels is estimated to be between 0.70 and 1.90 The airline industry has a strong interest in developing sustainable aviation fuels, in order to reduce their exposure to increasing oil prices and cost liability for greenhouse gas emissions. The feasibility and cost of producing sustainable biomass‐based jet fuels at a sufficient scale to materially address these issues is an enormous challenge. This paper builds directly on the biophysical study by H.T. Murphy, D.A. O'Connell, R.J. Raison, A.C. Warden, T.H. Booth, A. Herr, A.L. Braid, D.F. Crawford, J.A. Hayward, T. Javonovic, J.G. McIvor, M.H. O'Connor, M.L. Poole, D. Prestwidge, N. Raisbeck‐Brown & L. Rye, In review, which examined a 25 year scale‐up strategy to produce 5% of projected jet fuel demand in Australia in 2020 (470 mL) in the Fitzroy region of Queensland, Australia. The strategy was based on the use of a mixed ligno‐cellulosic biomass feedstock and assumed, for the sake of exploring and quantifying the scenario, a simplified two‐step conversion process – conversion of biomass to crude bio‐oil within the region, and upgrade to jet fuel at a central Brisbane facility. This paper provides details on the costs of production in this scenario, focusing on two different strategies for biomass utilization, and two types of novel small–medium scale conversion technologies. The cost analyses have taken into account technology learning curves, different economies of scale and key cost sensitivities. The cost of biomass‐based jet fuels is estimated to be between 0.70 and 1.90 $ L?1 when the efficiency of conversion of biomass to biocrude and subsequently to aviation fuel is varied by ±10% of published values, with an average value of 1.10 $ L?1. This is within the range of the projected 2035 conventional jet fuel price of 1.50 $ L?1. Therefore, biomass‐based jet fuel has the potential to contribute to supply of Australia's jet fuel needs in the future.  相似文献   
992.
993.
BackgroundChronic kidney disease (CKD) diagnosis relies on glomerular filtration rate (eGFR) estimation, traditionally using the creatinine-based Modification of Diet in Renal Disease (MDRD) equation. The Chronic Kidney Disease Epidemiology Collaboration (CKDEPI) equation performs better in estimating eGFR and predicting mortality and CKD progression risk. Cystatin C is an alternative glomerular filtration marker less influenced by muscle mass. CKD risk stratification is improved by combining creatinine eGFR with cystatin C and urinary albumin to creatinine ratio (uACR). We aimed to identify the impact of introducing CKDEPI and cystatin C on the estimated prevalence and risk stratification of CKD in England and to describe prevalence and associations of cystatin C.LimitationsCross sectional study, single eGFR measure, no measured (‘true’) GFR.ConclusionsIntroducing the CKDEPI equation and targeted cystatin C measurement reduces estimated CKD prevalence and improves risk stratification.  相似文献   
994.
There are currently no available options to promote nerve regeneration through chronically denervated distal nerve stumps. Here we used a rat model of delayed nerve repair asking of prior insertion of side-to-side cross-bridges between a donor tibial (TIB) nerve and a recipient denervated common peroneal (CP) nerve stump ameliorates poor nerve regeneration. First, numbers of retrogradely-labelled TIB neurons that grew axons into the nerve stump within three months, increased with the size of the perineurial windows opened in the TIB and CP nerves. Equal numbers of donor TIB axons regenerated into CP stumps either side of the cross-bridges, not being affected by target neurotrophic effects, or by removing the perineurium to insert 5-9 cross-bridges. Second, CP nerve stumps were coapted three months after inserting 0-9 cross-bridges and the number of 1) CP neurons that regenerated their axons within three months or 2) CP motor nerves that reinnervated the extensor digitorum longus (EDL) muscle within five months was determined by counting and motor unit number estimation (MUNE), respectively. We found that three but not more cross-bridges promoted the regeneration of axons and reinnervation of EDL muscle by all the CP motoneurons as compared to only 33% regenerating their axons when no cross-bridges were inserted. The same 3-fold increase in sensory nerve regeneration was found. In conclusion, side-to-side cross-bridges ameliorate poor regeneration after delayed nerve repair possibly by sustaining the growth-permissive state of denervated nerve stumps. Such autografts may be used in human repair surgery to improve outcomes after unavoidable delays.  相似文献   
995.
Amyloid plaques composed of β-amyloid (Aβ) protein are a pathological hallmark of Alzheimer’s disease. We here report the generation and characterization of a novel transgenic mouse model of Aβ toxicity. The rTg9191 mice harbor a transgene encoding the 695 amino-acid isoform of human amyloid precursor protein (APP) with the Swedish and London mutations (APPNLI) linked to familial Alzheimer’s disease, under the control of a tetracycline-response element, as well as a transgene encoding the tetracycline transactivator, under the control of the promoter for calcium-calmodulin kinase IIα. In these mice, APPNLI is expressed at a level four-fold that of endogenous mouse APP and its expression is restricted to forebrain regions. Transgene expression was suppressed by 87% after two months of doxycycline administration. Histologically, we showed that (1) Aβ plaques emerged in cerebral cortex and hippocampus as early as 8 and 10.5-12.5 months of age, respectively; (2) plaque deposition progressed in an age-dependent manner, occupying up to 19% of cortex at ~25 months of age; and (3) neuropathology—such as abnormal neuronal architecture, tau hyperphosphorylation and misfolding, and neuroinflammation—was observed in the vicinity of neuritic plaques. Biochemically, we determined total Aβ production at varied ages of mice, and we showed that mice produced primarily fibrillar Aβ assemblies recognized by conformation-selective OC antibodies, but few non-fibrillar oligomers (e.g., Aβ*56) detectable by A11 antibodies. Finally, we showed that expression of the tetracycline transactivator resulted in reduced brain weight and smaller dentate-gyrus size. Collectively, these data indicate that rTg9191 mice may serve as a model for studying the neurological effects of the fibrillar Aβ assemblies in situ.  相似文献   
996.
Mucus alterations are a feature of ulcerative colitis (UC) and can drive inflammation by compromising the mucosal barrier to luminal bacteria. The exact pathogenesis of UC remains unclear, but CD4+ T cells reacting to commensal antigens appear to contribute to pathology. Given the unique capacity of dendritic cells (DCs) to activate naive T cells, colon DCs may activate pathogenic T cells and contribute to disease. Using Muc2-/- mice, which lack a functional mucus barrier and develop spontaneous colitis, we show that colitic animals have reduced colon CD103+CD11b- DCs and increased CD103-CD11b+ phagocytes. Moreover, changes in colonic DC subsets and distinct cytokine patterns distinguish mice with distally localized colitis from mice with colitis spread proximally. Specifically, mice with proximally spread, but not distally contained, colitis have increased IL-1β, IL-6, IL-17, TNFα, and IFNγ combined with decreased IL-10 in the distal colon. These individuals also have increased numbers of CD103+CD11b+ DCs in the distal colon. CD103+CD11b+ DCs isolated from colitic but not noncolitic mice induced robust differentiation of Th17 cells but not Th1 cells ex vivo. In contrast, CD103-CD11b+ DCs from colitic Muc2-/- mice induced Th17 as well as Th1 differentiation. Thus, the local environment influences the capacity of intestinal DC subsets to induce T cell proliferation and differentiation, with CD103+CD11b+ DCs inducing IL-17-producing T cells being a key feature of extensively spread colitis.  相似文献   
997.

Background

Recent pre-clinical studies have shown that complement activation contributes to glomerular and tubular injury in experimental FSGS. Although complement proteins are detected in the glomeruli of some patients with FSGS, it is not known whether this is due to complement activation or whether the proteins are simply trapped in sclerotic glomeruli. We measured complement activation fragments in the plasma and urine of patients with primary FSGS to determine whether complement activation is part of the disease process.

Study Design

Plasma and urine samples from patients with biopsy-proven FSGS who participated in the FSGS Clinical Trial were analyzed.

Setting and Participants

We identified 19 patients for whom samples were available from weeks 0, 26, 52 and 78. The results for these FSGS patients were compared to results in samples from 10 healthy controls, 10 patients with chronic kidney disease (CKD), 20 patients with vasculitis, and 23 patients with lupus nephritis.

Outcomes

Longitudinal control of proteinuria and estimated glomerular filtration rate (eGFR).

Measurements

Levels of the complement fragments Ba, Bb, C4a, and sC5b-9 in plasma and urine.

Results

Plasma and urine Ba, C4a, sC5b-9 were significantly higher in FSGS patients at the time of diagnosis than in the control groups. Plasma Ba levels inversely correlated with the eGFR at the time of diagnosis and at the end of the study. Plasma and urine Ba levels at the end of the study positively correlated with the level of proteinuria, the primary outcome of the study.

Limitations

Limited number of patients with samples from all time-points.

Conclusions

The complement system is activated in patients with primary FSGS, and elevated levels of plasma Ba correlate with more severe disease. Measurement of complement fragments may identify a subset of patients in whom the complement system is activated. Further investigations are needed to confirm our findings and to determine the prognostic significance of complement activation in patients with FSGS.  相似文献   
998.
Pulmonary arterial hypertension (PAH) is a devastating disorder characterized by progressive elevation of the pulmonary pressures that, in the absence of therapy, results in chronic right-heart failure and premature death. The vascular pathology of PAH is characterized by progressive loss of small (diameter, less than 50 μm) peripheral pulmonary arteries along with abnormal medial thickening, neointimal formation, and intraluminal narrowing of the remaining pulmonary arteries. Vascular pathology correlates with disease severity, given that hemodynamic effects and disease outcomes are worse in patients with advanced compared with lower-grade lesions. Novel imaging tools are urgently needed that demonstrate the extent of vascular remodeling in PAH patients during diagnosis and treatment monitoring. Optical coherence tomography (OCT) is a catheter-based intravascular imaging technique used to obtain high-resolution 2D and 3D cross-sectional images of coronary arteries, thus revealing the extent of vascular wall pathology due to diseases such as atherosclerosis and in-stent restenosis; its utility as a diagnostic tool in the assessment of the pulmonary circulation is unknown. Here we show that OCT provides high-definition images that capture the morphology of pulmonary arterial walls in explanted human lungs and during pulmonary arterial catheterization of an adult pig. We conclude that OCT may facilitate the evaluation of patients with PAH by disclosing the degree of wall remodeling present in pulmonary vessels. Future studies are warranted to determine whether this information complements the hemodynamic and functional assessments routinely performed in PAH patients, facilitates treatment selection, and improves estimates of prognosis and outcome.Abbreviations: OCT, optical coherence tomography; PAC, pulmonary artery catheter; PAH, pulmonary arterial hypertensionPulmonary arterial hypertension (PAH) is a devastating disorder characterized by progressive elevation of pulmonary pressures that, when untreated, can lead to chronic right heart failure and death.14 The vascular pathology of PAH is characterized by neointimal formation, medial thickening, intravascular thrombi and, in severe cases, intravascular clusters of disorganized endothelial cells that give rise to tortuous endovascular channels.8 Most of the early vascular lesions are found in small (diameter, less than 50 μm) pulmonary arteries. However, as the disease advances, pulmonary arteries (diameter, 50 μm or larger) proximal to these lesions also display evidence of luminal narrowing and medial thickening.7,8,15 Most patients with PAH are younger than those with chronic systemic vascular disorders (that is, coronary artery disease, peripheral vascular disease, systemic hypertension), whose vascular pathology involves mostly large to medium-sized arteries. However, both patient populations demonstrate various pathologic features, including vascular smooth-cell accumulation, neointimal formation, inflammation, luminal narrowing, and alterations in the composition of the extracellular matrix.6,17The only definite way to diagnose PAH is through right heart catheterization to directly measure the pressure in the pulmonary circulation. Although pulmonary angiography during right heart catheterization cannot be used to diagnose PAH, it provides supportive evidence of PAH by demonstrating significant peripheral small vessel loss and luminal narrowing in the remaining central vessels. Angiography can help clinicians visualize pulmonary vessels in real time, but this diagnostic technique has important limitations. The use of ionized contrast can cause allergic reactions and may trigger acute renal failure due to contrast-induced nephropathy.26 In addition, pulmonary angiography provides information regarding gross vessel appearance and small vessel perfusion but not about the state of vascular wall remodeling or the extent of luminal narrowing associated with PAH at any stage.5,16 Therefore, imaging techniques are urgently needed that complement the hemodynamic information obtained via right heart catheterization with a safe and reproducible method to assess vascular wall pathology, thereby allowing clinicians to correlate the clinical evolution of PAH with the progression of vascular pathology.The last decade has seen tremendous progress in the development of intravascular imaging modalities that can identify patients at risk for developing complications related to systemic vascular disease and therefore prevent disease-related morbidity and mortality.4 One such modality is optical coherence tomography (OCT), an imaging technique that uses a thin (diameter, 1.0 mm) wire and near-infrared light to capture micrometer-resolution, 3D images from within optical scattering media (for example, biologic tissue).1 Superior to other intravascular imaging techniques, OCT is frequently used in patients with coronary artery disease, where it provides high-resolution images of the coronary arterial wall that correlate highly with pathology seen in explanted vessels.10,11,21 To date, several small studies have demonstrated the application of OCT to the evaluation of vascular remodeling in both idiopathic PAH and chronic thromboembolic PAH.7,21 However, despite OCT''s obvious advantages in the characterization of vascular remodeling in discrete segments of the pulmonary circulation, whether OCT provides anatomic information across the length of the pulmonary artery has not been tested.Here, we report the capacity of OCT to obtain both longitudinal and cross-sectional images that provide accurate anatomic information on healthy pulmonary arteries in explanted human lungs and during the pulmonary arterial catheterization of a live adult pig (Sus scrofa domesticus).  相似文献   
999.
The serine/threonine kinase mammalian target of rapamycin (mTOR) governs growth, metabolism, and aging in response to insulin and amino acids (aa), and is often activated in metabolic disorders and cancer. Much is known about the regulatory signaling network that encompasses mTOR, but surprisingly few direct mTOR substrates have been established to date. To tackle this gap in our knowledge, we took advantage of a combined quantitative phosphoproteomic and interactomic strategy. We analyzed the insulin- and aa-responsive phosphoproteome upon inhibition of the mTOR complex 1 (mTORC1) component raptor, and investigated in parallel the interactome of endogenous mTOR. By overlaying these two datasets, we identified acinus L as a potential novel mTORC1 target. We confirmed acinus L as a direct mTORC1 substrate by co-immunoprecipitation and MS-enhanced kinase assays. Our study delineates a triple proteomics strategy of combined phosphoproteomics, interactomics, and MS-enhanced kinase assays for the de novo-identification of mTOR network components, and provides a rich source of potential novel mTOR interactors and targets for future investigation.The serine/threonine kinase mammalian target of rapamycin (mTOR)1 is conserved in all eukaryotes from yeast to mammals (1). mTOR is a central controller of cellular growth, whole body metabolism, and aging, and is frequently deregulated in metabolic diseases and cancer (2). Consequently, mTOR as well as its upstream and downstream cues are prime candidates for targeted drug development to alleviate the causes and symptoms of age-related diseases (3, 4). The identification of novel mTOR regulators and effectors thus remains a major goal in biomedical research. A vast body of literature describes a complex signaling network around mTOR. However, our current comparatively detailed knowledge of mTOR''s upstream cues contrasts with a rather limited set of known direct mTOR substrates.mTOR exists in two structurally and functionally distinct multiprotein complexes, termed mTORC1 and mTORC2. Both complexes contain mTOR kinase as well as the proteins mLST8 (mammalian lethal with SEC thirteen 8) (57), and deptor (DEP domain-containing mTOR-interacting protein) (8). mTORC1 contains the specific scaffold protein raptor (regulatory-associated protein of mTOR) (9, 10), whereas mTORC2 contains the specific binding partners rictor (rapamycin-insensitive companion of mTOR) (57), mSIN1 (TORC2 subunit MAPKAP1) (1113), and PRR5/L (proline rich protein 5/-like) (1416). The small macrolide rapamycin acutely inhibits mTORC1, but can also have long-term effects on mTORC2 (17, 18). More recently, ATP-analogs (19) that block both mTOR complexes, such as Torin 1 (20), have been developed. As rapamycin has already been available for several decades, our knowledge of signaling events associated with mTORC1 as well as its metabolic inputs and outputs is much broader as compared with mTORC2. mTORC1 responds to growth factors (insulin), nutrients (amino acids, aa) and energy (ATP). In response, mTORC1 activates anabolic processes (protein, lipid, nucleotide synthesis) and blocks catabolic processes (autophagy) to ultimately allow cellular growth (21). The insulin signal is transduced to mTORC1 via the insulin receptor (IR), and the insulin receptor substrate (IRS), which associates with class I phosphoinositide 3-kinases (PI3Ks). Subsequent phosphatidylinositol 3,4,5 trisphosphate (PIP3) binding leads to relocalization of the AGC kinases phosphoinositide-dependent protein kinase 1 (PDK1) and Akt (also termed protein kinase B, PKB) to the plasma membrane, where PDK1 phosphorylates Akt at T308 (22, 23). In response, Akt phosphorylates and inhibits the heterocomplex formed by the tuberous sclerosis complex proteins 1 and 2 (TSC1-TSC2) (24, 25). TSC1-TSC2 is the inhibitory, GTPase-activating protein for the mTORC1-inducing GTPase Ras homolog enriched in brain (rheb) (2630), which activates mTORC1 at the lysosome. mTORC1 localization depends on the presence of aa, which in a rag GTPase-dependent manner induce mTORC1 relocalization to lysosomes (31, 32). Low energy levels are sensed by the AMP-dependent kinase (AMPK), which in turn phosphorylates the TSC1-TSC2 complex (33) and raptor (34), thereby inhibiting mTORC1.mTORC1 phosphorylates its well-described downstream substrate S6-kinase (S6K) at T389, the proline-rich Akt substrate of 40 kDa (PRAS40) at S183, and the translational repressor 4E-binding protein (4E-BP) at T37/46 (3541). Unphosphorylated 4E-BP binds and inhibits the translation initiation factor 4G (eIF4G), which within the eIF4F complex mediates the scanning process of the ribosome to reach the start codon. Phosphorylation by mTORC1 inhibits 4E-BP''s interaction with eIF4E, thus allowing for assembly of eIF4F, and translation initiation (42, 43). More recently, also the IR-activating growth factor receptor-bound protein 10 (Grb10) (44, 45), the autophagy-initiating Unc-51-like kinase ULK1 (46), and the trifunctional enzymatic complex CAD composed of carbamoyl-phosphate synthetase 2, aspartate transcarbamoylase, and dihydroorotase (47, 48), which is required for nucleotide synthesis, have been described as direct mTORC1 substrates.mTORC2 activation is mostly described to be mediated by insulin, and this is mediated by a PI3K variant that is distinct from the PI3K upstream of mTORC1 (49, 50). Furthermore, mTORC2 responds to aa (5, 51). In response, mTORC2 phosphorylates the AGC kinases Akt at S473 (5255), and serum and glucocorticoid kinase SGK (56) and protein kinase C alpha (PKCalpha) (7) within their hydrophobic motifs (57, 58), to control cellular motility (57), hepatic glycolysis, and lipogenesis (59). In addition, mTOR autophosphorylation at S2481 has been established as an mTORC2 readout in several cell lines including HeLa cells (49).Given the multiplicity of effects via which mTOR controls cellular and organismal growth and metabolism, it is surprising that only relatively few direct mTOR substrates have been established to date. Proteomic studies are widely used to identify novel interactors and substrates of protein kinases. Two studies have recently shed light on the interaction of rapamycin and ATP-analog mTOR inhibitors with TSC2 inhibition in mammalian cells (44, 45), and one study has analyzed the effects of raptor and rictor knockouts in non-stimulated cells (48).In this work, we report a functional proteomics approach to study mTORC1 substrates. We used an inducible raptor knockdown to inhibit mTORC1 in HeLa cells, and analyzed the effect in combination with insulin and aa induction by quantitative phosphoproteomics using stable isotope labeling by amino acids in cell culture (SILAC) (60). In parallel, we purified endogenous mTOR complexes and studied the interactome of mTOR by SILAC-MS. Through comparative data evaluation, we identified acinus L as a potential novel aa/insulin-sensitive mTOR substrate. We further validated acinus L by co-immunoprecipitation and MS-enhanced kinase assays as a new direct mTORC1 substrate.  相似文献   
1000.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号