首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Replacing fossil fuels with an economically viable green alternative at scale has proved most challenging in the aviation sector. Recently sugarcane, the most productive crop on the planet, has been engineered to accumulate lipids. This opens the way for production of far more industrial vegetable oil per acre than previously possible. This study performs techno‐economic feasibility analysis of jet fuel production from this new cost efficient and high yield feedstock. A comprehensive process model for biorefinery producing hydrotreated jet fuel (from lipids) and ethanol (from sugars), with 1 600 000 MT yr?1 lipid‐cane processing capacity, was developed in SuperPro Designer. Considering lipid‐cane development is continuing for higher oil concentrations, analysis was performed with lipid‐cane containing 5%, 10%, 15%, and 20% lipids. Capital investments for the biorefinery ranged from 238.1 to 351.2 million USD, with jet fuel capacities of 12.6–50.5 million liters (correspondingly ethanol production of nil to 102.6 million liters). The production cost of jet fuel for different scenarios was estimated Replacing fossil fuels with an economically viable green alternative at scale has proved most challenging in the aviation sector. Recently sugarcane, the most productive crop on the planet, has been engineered to accumulate lipids. This opens the way for production of far more industrial vegetable oil per acre than previously possible. This study performs techno‐economic feasibility analysis of jet fuel production from this new cost efficient and high yield feedstock. A comprehensive process model for biorefinery producing hydrotreated jet fuel (from lipids) and ethanol (from sugars), with 1 600 000 MT yr?1 lipid‐cane processing capacity, was developed in SuperPro Designer. Considering lipid‐cane development is continuing for higher oil concentrations, analysis was performed with lipid‐cane containing 5%, 10%, 15%, and 20% lipids. Capital investments for the biorefinery ranged from 238.1 to 351.2 million USD, with jet fuel capacities of 12.6–50.5 million liters (correspondingly ethanol production of nil to 102.6 million liters). The production cost of jet fuel for different scenarios was estimated $0.73 to $1.79 per liter ($2.74 to $6.76 per gal) of jet fuel. In all cases, the cost of raw materials accounted for more than 70% of total operational cost. Biorefinery was observed self‐sustainable for steam and electricity requirement, because of in‐house steam and electricity generation from burning of bagasse. Minimum fuel selling prices with a 10% discount rate for 20% lipid case was estimated $1.40/L ($5.31/gal), which was lower than most of the reported prices of renewable jet fuel produced from other oil crops and algae. Along with lower production costs, lipid‐cane could produce as high as 16 times the jet fuel (6307 L ha?1) per unit land than that of other oil crops and do so using low‐value land unsuited to most other crops, while being highly water and nitrogen use efficient.  相似文献   

2.
This study presents supply scenarios of nonfood renewable jet fuel (RJF) in the European Union (EU) toward 2030, based on the anticipated regulatory context, availability of biomass and conversion technologies, and competing biomass demand from other sectors (i.e., transport, heat, power, and chemicals). A cost optimization model was used to identify preconditions for increased RJF production and the associated emission reductions, costs, and impact on competing sectors. Model scenarios show nonfood RJF supply could increase from 1 PJ in 2021 to 165–261 PJ/year (3.8–6.1 million tonne (Mt)/year) by 2030, provided advanced biofuel technologies are developed and adequate (policy) incentives are present. This supply corresponds to 6%–9% of jet fuel consumption and 28%–41% of total nonfood biofuel consumption in the EU. These results are driven by proposed policy incentives and a relatively high fossil jet fuel price compared to other fossil fuels. RJF reduces aviation‐related combustion emission by 12–19 Mt/year CO2‐eq by 2030, offsetting 53%–84% of projected emission growth of the sector in the EU relative to 2020. Increased RJF supply mainly affects nonfood biofuel use in road transport, which remained relatively constant during 2021–2030. The cost differential of RJF relative to fossil jet fuel declines from 40 €/GJ (1,740 €/t) in 2021 to 7–13 €/GJ (280–540 €/t) in 2030, because of the introduction of advanced biofuel technologies, technological learning, increased fossil jet fuel prices, and reduced feedstock costs. The cumulative additional costs of RJF equal €7.7–11 billion over 2021–2030 or €1.0–1.4 per departing passenger (intra‐EU) when allocated to the aviation sector. By 2030, 109–213 PJ/year (2.5–4.9 Mt/year) RJF is produced from lignocellulosic biomass using technologies which are currently not yet commercialized. Hence, (policy) mechanisms that expedite technology development are cardinal to the feasibility and affordability of increasing RJF production.  相似文献   

3.
Forest biomass represents 25–30 % of the annual biomass available in the USA for conversion into bio-based fuels, bio-based chemicals, and bioproducts in general. The USDA Forest Service Research and Development (R&D) has been focused on producing products from forest biomass since its inception in 1905, with direct combustion, solid sawn lumber, pulp and paper, ethanol as fuel, and silvichemicals all among the mission areas of product research and development. The renewed national interest in biomass conversion to fuels and chemicals is supportive of the most critical need of USDA Forest Service R&D, uses for small-diameter trees and other forest biomass that needs to be removed in the fuel mitigation–fire suppression and forest restoration work of the USDA Forest Service. This paper will summarize the recent USDA Forest Service research on direct combustion, fuel pellets, and conversion of forest biomass to ethanol, both as stand-alone biorefinery processes and as an addition to the traditional wood pulping process.  相似文献   

4.
It is expected that Brazil could play an important role in biojet fuel (BJF) production in the future due to the long experience in biofuel production and the good agro‐ecological conditions. However, it is difficult to quantify the techno‐economic potential of BJF because of the high spatiotemporal variability of available land, biomass yield, and infrastructure as well as the technological developments in BJF production pathways. The objective of this research is to assess the recent and future techno‐economic potential of BJF production in Brazil and to identify location‐specific optimal combinations of biomass crops and technological conversion pathways. In total, 13 production routes (supply chains) are assessed through the combination of various biomass crops and BJF technologies. We consider temporal land use data to identify potential land availability for biomass production. With the spatial distribution of the land availability and potential yield of biomass crops, biomass production potential and costs are calculated. The BJF production cost is calculated by taking into account the development in the technological pathways and in plant scales. We estimate the techno‐economic potential by determining the minimum BJF total costs and comparing this with the range of fossil jet fuel prices. The techno‐economic potential of BJF production ranges from 0 to 6.4 EJ in 2015 and between 1.2 and 7.8 EJ in 2030, depending on the reference fossil jet fuel price, which varies from 19 to 65 US$/GJ across the airports. The techno‐economic potential consists of a diverse set of production routes. The Northeast and Southeast region of Brazil present the highest potentials with several viable production routes, whereas the remaining regions only have a few promising production routes. The maximum techno‐economic potential of BJF in Brazil could meet almost half of the projected global jet fuel demand toward 2030.  相似文献   

5.
Several emerging technologies are aiming to meet renewable fuel standards, mitigate greenhouse gas emissions, and provide viable alternatives to fossil fuels. Direct conversion of solar energy into fungible liquid fuel is a particularly attractive option, though conversion of that energy on an industrial scale depends on the efficiency of its capture and conversion. Large-scale programs have been undertaken in the recent past that used solar energy to grow innately oil-producing algae for biomass processing to biodiesel fuel. These efforts were ultimately deemed to be uneconomical because the costs of culturing, harvesting, and processing of algal biomass were not balanced by the process efficiencies for solar photon capture and conversion. This analysis addresses solar capture and conversion efficiencies and introduces a unique systems approach, enabled by advances in strain engineering, photobioreactor design, and a process that contradicts prejudicial opinions about the viability of industrial photosynthesis. We calculate efficiencies for this direct, continuous solar process based on common boundary conditions, empirical measurements and validated assumptions wherein genetically engineered cyanobacteria convert industrially sourced, high-concentration CO2 into secreted, fungible hydrocarbon products in a continuous process. These innovations are projected to operate at areal productivities far exceeding those based on accumulation and refining of plant or algal biomass or on prior assumptions of photosynthetic productivity. This concept, currently enabled for production of ethanol and alkane diesel fuel molecules, and operating at pilot scale, establishes a new paradigm for high productivity manufacturing of nonfossil-derived fuels and chemicals.  相似文献   

6.
We have developed an assay based on rice embryogenic callus for rapid functional characterization of metabolic genes. We validated the assay using a selection of well‐characterized genes with known functions in the carotenoid biosynthesis pathway, allowing rapid visual screening of callus phenotypes based on tissue color. We then used the system to identify the functions of two uncharacterized genes: a chemically synthesized β–carotene ketolase gene optimized for maize codon usage, and a wild‐type Arabidopsis thaliana ortholog of the cauliflower Orange gene. In contrast to previous reports (Lopez, A.B., Van Eck, J., Conlin, B.J., Paolillo, D.J., O'Neill, J. and Li, L. ( 2008 ) J. Exp. Bot. 59, 213–223; Lu, S., Van Eck, J., Zhou, X., Lopez, A.B., O'Halloran, D.M., Cosman, K.M., Conlin, B.J., Paolillo, D.J., Garvin, D.F., Vrebalov, J., Kochian, L.V., Küpper, H., Earle, E.D., Cao, J. and Li, L. ( 2006 ) Plant Cell 18, 3594–3605), we found that the wild‐type Orange allele was sufficient to induce chromoplast differentiation. We also found that chromoplast differentiation was induced by increasing the availability of precursors and thus driving flux through the pathway, even in the absence of Orange. Remarkably, we found that diverse endosperm‐specific promoters were highly active in rice callus despite their restricted activity in mature plants. Our callus system provides a unique opportunity to predict the effect of metabolic engineering in complex pathways, and provides a starting point for quantitative modeling and the rational design of engineering strategies using synthetic biology. We discuss the impact of our data on analysis and engineering of the carotenoid biosynthesis pathway.  相似文献   

7.
Chiung-Yu  Huang Xianghua  Luo 《Biometrics》2008,64(3):987-988
The Statistical Analysis of Recurrent Events (R. J. Cook and J. F. Lawless) Chiung‐Yu Huang and Xianghua Luo Introduction to Empirical Processes and Semiparametric Inference (M. R. Kosorok) Changyong Feng Uncertain Judgements: Eliciting Experts' Probabilities (A. O'Hagan, C. E. Buck, A. Daneshkhah, J. R. Eiser, P. H. Garthwaite, D. J. Jenkinson, J. E. Oakley, and T. Rakow) James M. Dickey Models for Intensive Longitudinal Data (T. A. Walls and J. L. Schafer, editors) Daniel Farewell Quantitative Environmental Risk Analysis for Human Health (R. A. Fjeld, N. A. Eisenberg, and K. L. Compton) Scott M. Bartell Reliable Reasoning: Induction and Statistical Learning Theory (G. Harman and S. Kulkarni) Oliver Schulte Modeling Infectious Diseases in Humans and Animals (M. J. Keeling and P. Rohani) Carol Y. Lin Cluster and Classification Techniques for the Biosciences (A. H. Fielding) Morven Leese Modern Applied U‐Statistics (J. Kowalski and X. M. Tu) Jesse Frey Handbook of Statistical Genetics, 3rd edition (D. J. Balding, M. Bishop, and C. Cannings, editors) Karin Bammann, Ronja Foraita, Frauke Günther Quality of Life: The Assessment, Analysis, and Interpretation of Patient‐Reported Outcomes, 2nd edition (P. M. Fayers and D. Machin) Jeff A. Sloan, Amylou Dueck, Rui Qin, Wenting Wu, Pamela J. Atherton, Paul Novotny, Heshan Liu, Kelli N. Burger, Angelina D. Tan, Daniel Szydlo, Victor M. Johnson, Sara J. Felten, Xinghua Zhao, and Brent Diekmann Advanced Distance Sampling: Estimating Abundance of Biological Populations (S. T. Buckland, D. R. Anderson, K. P. Burnham, J. L. Laake, C. L. Borchers, and L. Thomas) Carl James Schwarz Brief Reports by the Editor The Construction of Optimal Stated Choice Experiments: Theory and Methods (D. J. Street and L. Burgess) Design and Analysis of Experiments, Volume 1: Introduction to Experimental Design, 2nd edition (K. Hinkelmann and O. Kempthorne) Introduction to Bayesian Statistics, 2nd edition (W. M. Bolstad) Asymptotic Theory of Statistics and Probability (A. Dasgupta) Bootstrap Methods: A Guide for Practitioners and Researchers, 2nd edition (M. R. Chernick)  相似文献   

8.
Algal‐derived therapeutics, bioactive molecules, and fuels produced in photobioreactors (PBRs) are of great scientific and economic interest, but the high cost of production still prevents their widespread use. Specifically, the cost of the energy inputs and the control of the photonic inputs that enable production optimization continue to be problematic. To this end, a novel 55‐L annular‐plate airlift PBR (APAPBR) with internal illumination was designed and characterized for the batch production of algal biomass. The APAPBR was able to convert mixing and photonic energy inputs into Chlorella pituita SG1 biomass at an efficiency of 0.064 (J biomass [J input]?1), or 0.27 g dry cell weight (DW) W?1 d?1. Thanks to a high degree of photon capture and the airlift effect that provided energy‐efficient mixing and mass transfer, this energy conversion is 54% of the theoretical maximum as determined in previous studies. Under these efficiency conditions, C. pituita SG1 was able to grow photoautotrophically to 3.9 ± 0.2 gDW L?1. Additionally, a mathematical approach was used to predict the mean light intensity with the highest biomass yield per unit of photonic input and the maximum biomass concentration achievable under the given process conditions. These predictions were validated in our system by the experimental cultivation data. This APAPBR represents a simple, innovative, and energy‐efficient PBR configuration that could decrease the cost of phototrophic bioprocesses and enable novel bioprocesses that require a high degree of control over the photonic input.  相似文献   

9.
Bioenergy as well as bioenergy with carbon capture and storage are key options to embark on cost‐efficient trajectories that realize climate targets. Most studies have not yet assessed the influence on these trajectories of emerging bioeconomy sectors such as biochemicals and renewable jet fuels (RJFs). To support a systems transition, there is also need to demonstrate the impact on the energy system of technology development, biomass and fossil fuel prices. We aim to close this gap by assessing least‐cost pathways to 2030 for a number of scenarios applied to the energy system of the Netherlands, using a cost‐minimization model. The type and magnitude of biomass deployment are highly influenced by technology development, fossil fuel prices and ambitions to mitigate climate change. Across all scenarios, biomass consumption ranges between 180 and 760 PJ and national emissions between 82 and 178 Mt CO2. High technology development leads to additional 100–270 PJ of biomass consumption and 8–20 Mt CO2 emission reduction compared to low technology development counterparts. In high technology development scenarios, additional emission reduction is primarily achieved by bioenergy and carbon capture and storage. Traditional sectors, namely industrial biomass heat and biofuels, supply 61–87% of bioenergy, while wind turbines are the main supplier of renewable electricity. Low technology pathways show lower biochemical output by 50–75%, do not supply RJFs and do not utilize additional biomass compared to high technology development. In most scenarios the emission reduction targets for the Netherlands are not met, as additional reduction of 10–45 Mt CO2 is needed. Stronger climate policy is required, especially in view of fluctuating fossil fuel prices, which are shown to be a key determinant of bioeconomy development. Nonetheless, high technology development is a no‐regrets option to realize deep emission reduction as it also ensures stable growth for the bioeconomy even under unfavourable conditions.  相似文献   

10.
Book reviews     
《Austral ecology》1987,12(3):323-331
Book review in this article Ecological Communities. Conceptual Issues and the Evidence Edited by D. R. Strong Jr, D. Simberloff, L. G. Abele and A. B. Thistle M. P. AUSTIN The Evolutionary Ecology of Ant-Plant Mutualisms Andrew Beattie Environmental Chemistry Peter O'Neill J. S. BURGESS Biology of Chrysopidae. Series Entomologica, Volume 27 Edited by M. Canard, Y. Semeria and T. R. New, Dr W. Junk K. LAMBKIN The Dynamic Partnership: Birds and Plants in Southern Australia Edited by H. A. Ford and D. C. Paton, D. J. Woolman G. H. PYKE Hot Deserts and Arid Shrublands, A. Ecosystems of the World 12A Edited by M. Evenari, I. Noy-Meir and D. W. Goodall Hot Deserts and Arid Shrublands, B. Ecosystems of the World 12B Edited by M. Evenari, I. Noy-Meir and D. W. Goodall B. H. WALKER Tropical Zooplankton. Developments in Hydrobiology 23 Edited by H. J. Dumont and Tundisi IAN A. E. BAYLY Landscape Ecology. Theory and Application Zev Naveh and Arthur S. Lieberman R. A. PERRY  相似文献   

11.
This study investigates the life cycle GHG emissions of jet fuel produced via the hydroprocessed esters and fatty acids (HEFA) pathway from canola grown in western Canada, with a focus on characterizing regional influences on emissions. We examine the effects of geographic variations in soil type, agricultural inputs, farming practices, and direct land use changes on life cycle GHG emissions. We utilize GREET 2016 but replace default feedstock production inputs with geographically representative data for canola production across eight western Canadian regions (representing 99% of Canada's canola production) and replace the default conversion process with data from a novel process model previously developed in ASPEN in our research group wherein oil extraction is integrated with the HEFA‐based fuel production process. Although canola production inputs and yields vary across the regions, resulting life cycle GHG emissions are similar if effects of land use and land management changes (LMC) are not included; 44–48 g CO2e/MJ for the eight regions (45%–50% reduction compared to petroleum jet fuel). Results are considerably more variable, 16–58 g CO2e/MJ, when including effects of land use and LMC directly related to conversion of lands from other uses to canola production (34%–82% reduction compared to petroleum jet fuel). We establish the main sources of emissions in the life cycle of canola jet fuel (N‐fertilizer and related emissions, fuel production), identify that substantially higher emissions may occur when using feedstock sourced from regions where conversion of forested land to cropland had occurred, and identify benefits of less intense tillage practices and increased use of summerfallow land. The methods and findings are relevant in jurisdictions internationally that are incorporating GHG emissions reductions from aviation fuels in a low carbon fuel market or legislating carbon intensity reduction requirements.  相似文献   

12.
Liquid and gaseous fuels from biotechnology: challenge and opportunities   总被引:3,自引:0,他引:3  
Abstract: This paper presents challenging opportunities for production of liquid and gaseous fuels by biotechnology. From the liquid fuels, ethyl alcohol production has been widely researched and implemented. The major obstacle for large scale production of ethanol for fuel is the cost, whereby the substrate represents one of the major cost components. Various scenarios will be presented for a critical assessment of cost distribution for production of ethanol from various substrates by conventional and high rate processes. The paper also focuses on recent advances in the research and application of biotechnological processes and methods for the production of liquid transportation fuels other than ethanol (other oxygenates; diesel fuel extenders and substitutes), as well as gaseous fuels (biogas, methane, reformed syngas). Potential uses of these biofuels are described, along with environmental concerns which accompany them. Emphasis is also put on microalgal lipids as diesel substitute and biogas/methane as a renewable alternative to natural gas. The capturing and use of landfill gases is also mentioned, as well as microbial coal liquefaction. Described is also the construction and performance of microbial fuel cells for the direct high-efficiency conversion of chemical fuel energy to electricity. Bacterial carbon dioxide recovery is briefly dealt with as an environmental issue associated with the use of fossil energy.  相似文献   

13.
The capacity for forests to aid in climate change mitigation efforts is substantial but will ultimately depend on their management. If forests remain unharvested, they can further mitigate the increases in atmospheric CO2 that result from fossil fuel combustion and deforestation. Alternatively, they can be harvested for bioenergy production and serve as a substitute for fossil fuels, though such a practice could reduce terrestrial C storage and thereby increase atmospheric CO2 concentrations in the near‐term. Here, we used an ecosystem simulation model to ascertain the effectiveness of using forest bioenergy as a substitute for fossil fuels, drawing from a broad range of land‐use histories, harvesting regimes, ecosystem characteristics, and bioenergy conversion efficiencies. Results demonstrate that the times required for bioenergy substitutions to repay the C Debt incurred from biomass harvest are usually much shorter (< 100 years) than the time required for bioenergy production to substitute the amount of C that would be stored if the forest were left unharvested entirely, a point we refer to as C Sequestration Parity. The effectiveness of substituting woody bioenergy for fossil fuels is highly dependent on the factors that determine bioenergy conversion efficiency, such as the C emissions released during the harvest, transport, and firing of woody biomass. Consideration of the frequency and intensity of biomass harvests should also be given; performing total harvests (clear‐cutting) at high‐frequency may produce more bioenergy than less intensive harvesting regimes but may decrease C storage and thereby prolong the time required to achieve C Sequestration Parity.  相似文献   

14.
Effective and efficient breakdown of lignocellulosic biomass remains a primary barrier for its use as a feedstock for renewable transportation fuels. A more detailed understanding of the material properties of biomass slurries during conversion is needed to design cost‐effective conversion processes. A series of enzymatic saccharification experiments were performed with dilute acid pretreated corn stover at initial insoluble solids loadings of 20% by mass, during which the concentration of particulate solids and the rheological property yield stress (τy) of the slurries were measured. The saccharified stover liquefies to the point of being pourable (τy ≤ 10 Pa) at a total biomass conversion of about 40%, after roughly 2 days of saccharification for a moderate loading of enzyme. Mass balance and semi‐empirical relationships are developed to connect the progress of enzymatic hydrolysis with particle concentration and yield stress. The experimental data show good agreement with the proposed relationships. The predictive models developed here are based on established physical principles and should be applicable to the saccharification of other biomass systems. The concepts presented, especially the ability to predict yield stress from extent of conversion, will be helpful in the design and optimization of enzymatic hydrolysis processes that operate at high‐solids loadings. Biotechnol. Bioeng. 2009; 104: 290–300 © 2009 Wiley Periodicals, Inc.  相似文献   

15.
US Department of Energy research aimed at co‐optimizing fuels and engine performance identified several bioblendstocks that can improve fuel economy including an aromatic‐rich hydrocarbon derived from woody biomass. This work supports an analysis of its large‐scale deployment implying a production target of approximately 15 billion liters of bioblendstock for the supply of 57 billion liters of high‐octane fuel by 2050. It simulates potential transition pathways to lignocellulosic feedstock market structures capable of supplying a mature biorefining industry at this scale. In the present absence of biorefineries, transitions are modeled via nonbiofuel feedstock markets, so‐called companion markets. The resource distribution across several demand industries is simulated to determine biomass availability and price dynamics over time. Results indicate that the wood supply base is mainly influenced by traditional markets including housing and pulp and paper. The selected companion market of wood pellet combustion for heat and electricity generation is found to positively stimulate biomass mobilization, especially in the initial absence of biorefineries. Eventually, biorefineries are found to be able to out‐compete the companion market. As such, they directly benefit from the processing (i.e., pelleting) capacity established to produce commodity‐type intermediates for the companion market. We conclude that the amount of bioblendstock produced is directly related to the size of the companion market (and its pelleting capacity). An initially larger companion market generates up to 20 million dry tonnes of additional feedstock, equivalent to 27 commercial‐scale biorefineries, or an additional production of 5 billion liters by 2050. Distinguishing between industry‐specific feedstock preferences based on average biomass quality characteristics, this analysis goes beyond past research efforts that assume automatic fungibility across different feedstocks. Improving engine performance is a key driver for the promotion of low‐carbon fuels derived from bioblendstocks. This analysis portrays feedstock market transition pathways for their large‐scale deployment.  相似文献   

16.
MixAlco is a robust process that converts biomass to fuels and chemicals. A key feature of the MixAlco process is the fermentation, which employs a mixed culture of acid-forming microorganisms to convert biomass components (carbohydrates, proteins, and fats) to carboxylate salts. Subsequently, these intermediate salts are chemically converted to hydrocarbon fuels (gasoline, jet fuel, and diesel). This work focuses on process synthesis, simulation, integration, and cost estimation of the MixAlco process. For the base-case capacity of 40 dry tonne feedstock per hour, the total capital investment is US $5.54/annual gallon of hydrocarbon fuels (US $5.54/annual gallon of hydrocarbon fuels (US 3.79/annual gallon of ethanol equivalent), and the minimum selling price [with 10% return on investment (ROI), internal hydrogen production, and US $60/tonne biomass] is US $60/tonne biomass] is US 2.56/gal hydrocarbon, which is equivalent to US $1.75/gal ethanol. If plant capacity is increased to 400 tph, the minimum selling price of biomass-derived hydrocarbon fuels is US $1.75/gal ethanol. If plant capacity is increased to 400 tph, the minimum selling price of biomass-derived hydrocarbon fuels is US 1.76/gal hydrocarbon (US $1.20/gal ethanol equivalent), which can compete without subsidies with petroleum-derived hydrocarbons when crude oil sells for about US $1.20/gal ethanol equivalent), which can compete without subsidies with petroleum-derived hydrocarbons when crude oil sells for about US 65/bbl. At 40 tph, using the average tipping fee for municipal solid waste (US $45/dry tonne) and current price of external hydrogen (US $45/dry tonne) and current price of external hydrogen (US 1/kg), the minimum selling price is only US $1.24/gal hydrocarbon (US $1.24/gal hydrocarbon (US 0.85/gal ethanol equivalent).  相似文献   

17.
CelTherm is a biochemical process to produce renewable fuels and chemicals from lignocellulosic biomass. The present study’s objective was to determine the level of treatment/purity of the microbial triacylglyceride oil (TAG) necessary to facilitate fuel production. After a unique microbe aerobically synthesizes TAG from biomass-derived sugars, the microbes were harvested and dried then crude TAG was chemically extracted from the residual biomass. Some TAGs were further purified to hydrotreating process requirements. Both grades were then noncatalytically cracked into a petroleum-like intermediate characterized by gas chromatography. Experiments were repeated using refined soybean oil for comparison to previous studies. The products from crude microbial TAG cracking were then further refined into a jet fuel product. Fuel tests indicate that this jet fuel corresponds to specifications for JP-8 military turbine fuel. It was thus concluded that the crude microbial TAG is a suitable feedstock with no further purification required, demonstrating CelTherm’s commercial potential.  相似文献   

18.
The cost of supplying wood biomass from forestry operations in remote areas has been an obstacle to expansion of forest‐based bioenergy in much of the western United States. Economies of scale in the production of liquid fuels from lignocellulosic biomass feedstocks favor large centralized biorefineries. Increasing transportation efficiency through torrefaction and pelletization at distributed satellite facilities may serve as a means to expand the utilization of forestry residuals in biofuel production. To investigate this potential, a mixed‐integer linear program was developed to optimize the feedstock supply chain design with and without distributed pretreatment. The model uses techno‐economic assessment of scale‐dependent biomass pretreatment processes from existing literature and multimodal biomass transportation cost evaluations derived from a spatially explicit network analysis as input. In addition, the sensitivity of the optimal system configuration was determined for variations of key input parameters including the production scale of pretreatment facilities, road and rail transportation costs, and feedstock procurement costs. Torrefaction and densification were found to reduce transportation costs by $0.84 per GJ and overall delivered costs by $0.24 per GJ, representing 14.5% and 5.2% cost reductions compared to feedstock collection without pretreatment. Significant uncertainties remain in terms of the costs associated with deploying torrefaction equipment at the scales modeled, but the level of potential cost savings suggests further analysis and development of these alternatives.  相似文献   

19.
Book reviews     
Book reviewed in this article:
M icroorganisms from S mallpox to L yme D isease (1990). Edited by T.D. Brock.
E hrlichiosis : A V ector -B orne D isease of A nimals and M an (1990). Edited by J.C. Williams & I. Kakoma.
P erspectives in A ntiinfective T herapy (1989). Edited by G.G. Jackson, H.D. Schlumberger & H.J. Zeiler.  相似文献   

20.
Domestic and foreign renewable energy targets and financial incentives have increased demand for woody biomass and bioenergy in the southeastern United States. This demand is expected to be met through purpose‐grown agricultural bioenergy crops, short‐rotation tree plantations, thinning and harvest of planted and natural forests, and forest harvest residues. With results from a forest economics model, spatially explicit state‐and‐transition simulation models, and species–habitat models, we projected change in habitat amount for 16 wildlife species caused by meeting a renewable fuel target and expected demand for wood pellets in North Carolina, USA. We projected changes over 40 years under a baseline ‘business‐as‐usual’ scenario without bioenergy production and five scenarios with unique feedstock portfolios. Bioenergy demand had potential to influence trends in habitat availability for some species in our study area. We found variation in impacts among species, and no scenario was the ‘best’ or ‘worst’ across all species. Our models projected that shrub‐associated species would gain habitat under some scenarios because of increases in the amount of regenerating forests on the landscape, while species restricted to mature forests would lose habitat. Some forest species could also lose habitat from the conversion of forests on marginal soils to purpose‐grown feedstocks. The conversion of agricultural lands on marginal soils to purpose‐grown feedstocks increased habitat losses for one species with strong associations with pasture, which is being lost to urbanization in our study region. Our results indicate that landscape‐scale impacts on wildlife habitat will vary among species and depend upon the bioenergy feedstock portfolio. Therefore, decisions about bioenergy and wildlife will likely involve trade‐offs among wildlife species, and the choice of focal species is likely to affect the results of landscape‐scale assessments. We offer general principals to consider when crafting lists of focal species for bioenergy impact assessments at the landscape scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号