首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3968篇
  免费   278篇
  国内免费   277篇
  2024年   9篇
  2023年   57篇
  2022年   65篇
  2021年   214篇
  2020年   168篇
  2019年   165篇
  2018年   171篇
  2017年   139篇
  2016年   192篇
  2015年   260篇
  2014年   320篇
  2013年   341篇
  2012年   351篇
  2011年   307篇
  2010年   213篇
  2009年   191篇
  2008年   209篇
  2007年   166篇
  2006年   149篇
  2005年   138篇
  2004年   101篇
  2003年   86篇
  2002年   75篇
  2001年   56篇
  2000年   56篇
  1999年   60篇
  1998年   42篇
  1997年   23篇
  1996年   31篇
  1995年   29篇
  1994年   20篇
  1993年   18篇
  1992年   16篇
  1991年   13篇
  1990年   14篇
  1989年   11篇
  1988年   9篇
  1987年   10篇
  1986年   9篇
  1985年   9篇
  1984年   1篇
  1983年   2篇
  1981年   3篇
  1979年   4篇
排序方式: 共有4523条查询结果,搜索用时 15 毫秒
991.
The success of helper-dependent adenoviral (HD-Ad) vector-mediated lung gene therapy is hampered by the host immune response, which limits pulmonary transgene expression following multiple rounds of vector readminstration. Here, we show that HD-Ad-mediated pulmonary gene expression is sustained even upon three rounds of readministration to immunodeficient mice, highlighting the need to suppress the adaptive immune response for sustained gene expression following vector readministration. Therefore, we devised a dendritic cell (DC)-based strategy for induction of immunological tolerance toward HD-Ad vectors. DCs derived in the presence of interleukin-10 (IL-10) are refractory to HD-Ad-induced maturation and instead facilitate generation of IL-10-producing Tr1 regulatory T cells which suppress HD-Ad-induced T cell proliferation. Delivery of HD-Ad-pulsed, IL-10-modified DCs to mice induces long-lasting immunological tolerance to HD-Ad vectors, whereby pulmonary DC maturation, the T cell response, and antibody response to HD-Ad vectors are suppressed even after three rounds of pulmonary HD-Ad readministration. Moreover, sustained transgene expression is also observed in the lungs of mice immunized with HD-Ad-pulsed, IL-10-modified DCs even after three rounds of pulmonary HD-Ad delivery. Taken together, these studies identify the use of DCs generated in the presence of IL-10 as a novel strategy to induce long-lasting immune tolerance to HD-Ad vectors.  相似文献   
992.
Antibodies to epitopes in the E2 protein of hepatitis C virus (HCV) reduce the viral infectivity in vivo and in vitro. However, the virus can persist in patients in the presence of neutralizing antibodies. In this study, we generated a panel of monoclonal antibodies that bound specifically to the region between residues 427 and 446 of the E2 protein of HCV genotype 1a, and we examined their capacity to neutralize HCV in a cell culture system. Of the four monoclonal antibodies described here, two were able to neutralize the virus in a genotype 1a-specific manner. The other two failed to neutralize the virus. Moreover, one of the nonneutralizing antibodies could interfere with the neutralizing activity of a chimpanzee polyclonal antibody at E2 residues 412 to 426, as it did with an HCV-specific immune globulin preparation, which was derived from the pooled plasma of chronic hepatitis C patients. Mapping the epitope-paratope contact interfaces revealed that these functionally distinct antibodies shared binding specificity for key amino acid residues, including W437, L438, L441, and F442, within the same epitope of the E2 protein. These data suggest that the effectiveness of antibody-mediated neutralization of HCV could be deduced from the interplay between an antibody and a specific set of amino acid residues. Further understanding of the molecular mechanisms of antibody-mediated neutralization and nonneutralization should provide insights for designing a vaccine to control HCV infection in vivo.  相似文献   
993.
Domestic ducks in southern China act as an important reservoir for influenza viruses and have also facilitated the establishment of multiple H6 influenza virus lineages. To understand the continuing evolution of these established lineages, 297 H6 viruses isolated from domestic ducks during 2006 and 2007 were genetically and antigenically analyzed. Phylogenetic analyses showed that group II duck H6 viruses had replaced the previously predominant group I lineage and extended their geographic distribution from coastal to inland regions. Group II H6 virus showed that the genesis and development of multiple types of deletions in the neuraminidase (NA) stalk region could occur in the influenza viruses from domestic ducks. A gradual replacement of the N2 NA subtype with N6 was observed. Significant antigenic changes occurred within group II H6 viruses so that they became antigenically distinguishable from group I and gene pool viruses. Gene exchange between group II H6 viruses and the established H5N1, H9N2, or H6N1 virus lineages in poultry in the region was very limited. These findings suggest that domestic ducks can facilitate significant genetic and antigenic changes in viruses established in this host and highlight gaps in our knowledge of influenza virus ecology and even the evolutionary behavior of this virus family in its aquatic avian reservoirs.  相似文献   
994.
Loss-of-function mutations in the gene encoding the multifunctional protein, DJ-1, have been implicated in the pathogenesis of early-onset familial Parkinson's disease (PD), suggesting that DJ-1 may act as a neuroprotectant for dopaminergic (DA) neurons. Enhanced autophagy may benefit PD by clearing damaged organelles and protein aggregates; thus, we determined if DJ-1 protects DA neurons against mitochondrial dysfunction and oxidative stress through an autophagic pathway. Cultured DA cells (MN9D) overexpressing DJ-1 were treated with the mitochondrial complex I inhibitor, rotenone. In addition, rotenone was injected into the left substantia nigra of rats 4 weeks after injection with a DJ-1 expression vector. Overexpression of DJ-1 protected MN9D cells against apoptosis, significantly enhanced the survival of nigral DA neurons after rotenone treatment in vivo, and rescued rat behavioral abnormalities. Overexpression of DJ-1 enhanced rotenone-evoked expression of the autophagic markers, beclin-1 and LC3II, while transmission electron microscopy and confocal imaging revealed that the ultrastructural signs of autophagy were increased by DJ-1. The neuroprotective effects of DJ-1 were blocked by phosphoinositol 3‐kinase and the autophagy inhibitor, 3-methyladenine, and by the ERK pathway inhibitor, U0126. Confocal imaging revealed that the size of p62-positive puncta decreased significantly in DJ-1 overexpression of MN9D cells 12 h after rotenone treatment, suggesting that DJ-1 reveals the ability to clear aggregated p62 associated with PD. Factors that control autophagy, including DJ-1, may inhibit rotenone-induced apoptosis and present novel targets for therapeutic intervention in PD.  相似文献   
995.
996.
NEG2, a short C-terminal segment (817–838) of the unique regulatory (R) domain of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel, has been reported to regulate CFTR gating in response to cAMP-dependent R domain phosphorylation. The underlying mechanism, however, is unclear. Here, Lys-946 of cytoplasmic loop 3 (CL3) is proposed as counter-ion of Asp-835, Asp-836, or Glu-838 of NEG2 to prevent the channel activation by PKA. Arg-764 or Arg-766 of the Ser-768 phosphorylation site of the R domain is proposed to promote the channel activation possibly by weakening the putative CL3-NEG2 electrostatic attraction. First, not only D835A, D836A, and E838A but also K946A reduced the PKA-dependent CFTR activation. Second, both K946D and D835R/D836R/E838R mutants were activated by ATP and curcumin to a different extent. Third, R764A and R766A mutants enhanced the PKA-dependent activation. However, it is very exciting that D835R/D836R/E838R and K946D/H950D and H950R exhibited normal channel processing and activity whereas D835R/D836R/E838R/K946D/H950D was fractionally misprocessed and silent in response to forskolin. Further, D836R and E838R played a critical role in the asymmetric electrostatic regulation of CFTR processing, and Ser-768 phosphorylation may not be involved. Thus, a complex interfacial interaction among CL3, NEG2, and the Ser-768 phosphorylation site may be responsible for the asymmetric electrostatic regulation of CFTR activation and processing.  相似文献   
997.
998.
999.
Selective detection of cysteine in serum samples was achieved on a graphene nanoribbon (GNR) and Nafion nanocomposite modified electrode with high precision. The superior conductivity and abundant amount of active chemical oxygen groups on the edge of GNR led to extremely highly electrocatalytic activity of GNR towards the electrochemical oxidation of cysteine at +0.025 V. The electrocatalytic behavior was further used for sensitive detection of cysteine by differential pulse voltammetry. Under optimized conditions, the calibration curve was linear in the range from 25 nM to 500 μM. The electrochemical sensor showed strong antifouling ability, good stability and selectivity. It could effectively exclude the interferences from other kinds of biothiols and the biological relevant species, thus had great perspective for in vivo analysis of biological samples.  相似文献   
1000.
Type 5 17β-hydroxysteroid dehydrogenase (AKR1C3) is the major enzyme in the prostate that reduces 4-androstene-3,17-dione (Δ(4)-Adione) to the androgen receptor (AR) ligand testosterone. AKR1C3 is upregulated in prostate cancer (PCa) and castrate resistant prostate cancer (CRPC) that develops after androgen deprivation therapy. PCa and CRPC often depend on intratumoral androgen biosynthesis and upregulation of AKR1C3 could contribute to intracellular synthesis of AR ligands and stimulation of proliferation through AR signaling. To test this hypothesis, we developed an LNCaP prostate cancer cell line overexpressing AKR1C3 (LNCaP-AKR1C3) and compared its metabolic and proliferative responses to Δ(4)-Adione treatment with that of the parental, AKR1C3 negative LNCaP cells. In LNCaP and LNCaP-AKR1C3 cells, metabolism proceeded via 5α-reduction to form 5α-androstane-3,17-dione and then (epi)androsterone-3-glucuronide. LNCaP-AKR1C3 cells made significantly higher amounts of testosterone-17β-glucuronide. When 5α-reductase was inhibited by finasteride, the production of testosterone-17β-glucuronide was further elevated in LNCaP-AKR1C3 cells. When AKR1C3 activity was inhibited with indomethacin the production of testosterone-17β-glucuronide was significantly decreased. Δ(4)-Adione treatment stimulated cell proliferation in both cell lines. Finasteride inhibited LNCaP cell proliferation, consistent with 5α-androstane-3,17-dione acting as the major metabolite that stimulates growth by binding to the mutated AR. However, LNCaP-AKR1C3 cells were resistant to the growth inhibitory properties of finasteride, consistent with the diversion of Δ(4)-Adione metabolism from 5α-reduced androgens to increased formation of testosterone. Indomethacin did not result in differences in Δ(4)-Adione induced proliferation since this treatment led to the same metabolic profile in LNCaP and LNCaP-AKR1C3 cells. We conclude that AKR1C3 overexpression diverts androgen metabolism to testosterone that results in proliferation in androgen sensitive prostate cancer. This effect is seen despite high levels of uridine glucuronosyl transferases suggesting that AKR1C3 activity can surmount the effects of this elimination pathway. Treatment options in prostate cancer that target 5α-reductase where AKR1C3 co-exists may be less effective due to the diversion of Δ(4)-Adione to testosterone.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号