首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1626篇
  免费   112篇
  国内免费   1篇
  2021年   17篇
  2020年   7篇
  2019年   14篇
  2018年   22篇
  2017年   26篇
  2016年   35篇
  2015年   36篇
  2014年   42篇
  2013年   96篇
  2012年   73篇
  2011年   90篇
  2010年   48篇
  2009年   42篇
  2008年   69篇
  2007年   75篇
  2006年   83篇
  2005年   86篇
  2004年   98篇
  2003年   82篇
  2002年   71篇
  2001年   65篇
  2000年   52篇
  1999年   45篇
  1998年   15篇
  1997年   19篇
  1996年   16篇
  1995年   15篇
  1994年   11篇
  1993年   18篇
  1992年   42篇
  1991年   28篇
  1990年   22篇
  1989年   30篇
  1988年   22篇
  1987年   20篇
  1986年   27篇
  1985年   22篇
  1984年   16篇
  1983年   11篇
  1982年   8篇
  1981年   10篇
  1980年   8篇
  1979年   12篇
  1978年   11篇
  1977年   8篇
  1976年   11篇
  1975年   10篇
  1973年   7篇
  1972年   9篇
  1970年   9篇
排序方式: 共有1739条查询结果,搜索用时 31 毫秒
121.
We examined whether short-term ascorbic acid deficiency induces oxidative stress in the retinas of young guinea pigs. Four-week-old guinea pigs were given a scorbutic diet (20 g/animal/day) with and without adequate ascorbic acid (400 mg/animal/day) in drinking water for 3 weeks. The serum concentrations of the reduced form of ascorbic acid and the oxidized form of ascorbic acid in the deficient group were 14.1 and 4.1%, respectively, of those in the adequate group. The retinal contents of the reduced form of ascorbic acid and the oxidized form of ascorbic acid in the deficient group were 6.4 and 27.3%, respectively, of those in the adequate group. The retinal content of thiobarbituric acid-reactive substances, an index of lipid peroxidation, was 1.9-fold higher in the deficient group than in the adequate group. Retinal reduced glutathione and vitamin E contents in the deficient group were 70.1 and 69.4%, respectively, of those in the adequate group. This ascorbic acid deficiency did not affect serum thiobarbituric acid-reactive substances and reduced glutathione concentrations but increased serum vitamin E concentration. These results indicate that short-term ascorbic acid deficiency induces oxidative stress in the retinas of young guinea pigs without disrupting systemic antioxidant status.  相似文献   
122.
Possible novel therapy for diabetes with cell-permeable JNK-inhibitory peptide   总被引:21,自引:0,他引:21  
The JNK pathway is known to be activated in several tissues in the diabetic state, and is possibly involved in the development of insulin resistance and suppression of insulin biosynthesis. Here we show a potential new therapy for diabetes using cell-permeable JNK-inhibitory peptide. Intraperitoneal administration of the peptide led to its transduction into various tissues in vivo, and this treatment markedly improved insulin resistance and ameliorated glucose tolerance in diabetic mice. These data indicate that the JNK pathway is critically involved in diabetes and that the cell-permeable JNK-inhibitory peptide may have promise as a new therapeutic agent for diabetes.  相似文献   
123.
The walking rhythm is known to show phase shift or "reset" in response to external impulsive perturbations. We tried to elucidate functional roles of the phase reset possibly used for the neural control of locomotion. To this end, a system with a double pendulum as a simplified model of the locomotor control and a model of bipedal locomotion were employed and analyzed in detail. In these models, a movement corresponding to the normal steady-state walking was realized as a stable limit cycle solution of the system. Unexpected external perturbations applied to the system can push the state point of the system away from its limit cycle, either outside or inside the basin of attraction of the limit cycle. Our mathematical analyses of the models suggested functional roles of the phase reset during walking as follows. Function 1: an appropriate amount of the phase reset for a given perturbation can contribute to relocating the system's state point outside the basin of attraction of the limit cycle back to the inside. Function 2: it can also be useful to reduce the convergence time (the time necessary for the state point to return to the limit cycle). In experimental studies during walking of animals and humans, the reset of walking rhythm induced by perturbations was investigated using the phase transition curve (PTC) or the phase resetting curve (PRC) representing phase-dependent responses of the walking. We showed, for the simple double-pendulum model, the existence of the optimal phase control and the corresponding PTC that could optimally realize the aforementioned functions in response to impulsive force perturbations. Moreover, possible forms of PRC that can avoid falling against the force perturbations were predicted by the biped model, and they were compared with the experimentally observed PRC during human walking. Finally, physiological implications of the results were discussed.  相似文献   
124.
A preliminary study to detect human worm carriers of Taenia solium in Papua (Irian Jaya), Indonesia was carried out using stool examinations for the detection of copro-antigens and adult proglottids after chemotherapy, and confirmation by mitochondrial DNA analysis using expelled proglottids and metacestodes developed in NOD/Shi-scid mice from eggs of expelled proglottids. Approximately 8.6% of the local population in Kama (5/58), 1 km from the local capital city centre, Wamena, were confirmed to harbour adult T. solium using these techniques.  相似文献   
125.
Very little is known about the contribution of a low affinity neurotrophin receptor, p75, to neurotransmitter release. Here we show that nerve growth factor (NGF) induced a rapid release of glutamate and an increase of Ca2+ in cerebellar neurons through a p75-dependent pathway. The NGF-induced release occurred even in the presence of the Trk inhibitor K252a. The release caused by NGF but not brain-derived neurotrophic factor was enhanced in neurons overexpressing p75. Further, after transfection of p75-small interfering RNA, which down-regulated the endogenous p75 expression, the NGF-induced release was inhibited, suggesting that the NGF-induced glutamate release was through p75. We found that the NGF-increased Ca2+ was derived from the ryanodine-sensitive Ca2+ receptor and that the NGF-increased Ca2+ was essential for the NGF-induced glutamate release. Furthermore, scyphostatin, a sphingomyelinase inhibitor, blocked the NGF-dependent Ca2+ increase and glutamate release, suggesting that a ceramide produced by sphingomyelinase was required for the NGF-stimulated Ca2+ increase and glutamate release. This action of NGF only occurred in developing neurons whereas the brain-derived neurotrophic factor-mediated Ca2+ increase and glutamate release was observed at the mature neuronal stage. Thus, we demonstrate that NGF-mediated neurotransmitter release via the p75-dependent pathway has an important role in developing neurons.  相似文献   
126.
Ovalbumin, a non-inhibitory member of serine proteinase inhibitors (serpin), is transformed into a heat-stabilized form, S-ovalbumin, under elevated pH conditions. The structural mechanism for the S-ovalbumin formation has long been a puzzling question in food science and serpin structural biology. On the basis of the commonly observed serpin thermostabilization by insertion of the reactive center loop into the proximal beta-sheet, the most widely accepted hypothetical model has included partial loop insertion. Here we demonstrate, for the first time, the crystal structure of S-ovalbumin at 1.9-A resolution. This structure unequivocally excludes the partial loop insertion mechanism; the overall structure, including the reactive center loop structure, is almost the same as that of native ovalbumin, except for the significant motion of the preceding loop of strand 1A away from strand 2A. The most striking finding is that Ser-164, Ser-236, and Ser-320 take the d-amino acid residue configuration. These chemical inversions can be directly related to the irreversible and stepwise nature of the transformation from native ovalbumin to S-ovalbumin. As conformational changes of the side chains, significant alternations are found in the values of the chi 1 of Phe-99 and the chi 3 of Met-241. The former conformational change leads to the decreased solvent accessibility of the hydrophobic core around Phe-99, which includes Phe-180 and Phe-378, the highly conserved residues in serpin. This may give a thermodynamic advantage to the structural stability of S-ovalbumin.  相似文献   
127.
Possible roles of the Glu40-Ser48 loop connecting A domain and the first transmembrane helix (M1) in sarcoplasmic reticulum Ca(2+)-ATPase (SERCA1a) were explored by mutagenesis. Deletions of any single residues in this loop caused almost complete loss of Ca(2+)-ATPase activity, while their substitutions had no or only slight effects. Single deletions or substitutions in the adjacent N- and C-terminal regions of the loop (His32-Asn39 and Leu49-Ile54) had no or only slight effects except two specific substitutions of Asn39 found in SERCA2b in Darier's disease pedigrees. All the single deletion mutants for the Glu40-Ser48 loop and the specific Asn39 mutants formed phosphoenzyme intermediate (EP) from ATP, but their isomeric transition from ADP-sensitive EP (E1P) to ADP-insensitive EP (E2P) was almost completely or strongly inhibited. Hydrolysis of E2P formed from Pi was also dramatically slowed in these deletion mutants. On the other hand, the rates of the Ca(2+)-induced enzyme activation and subsequent E1P formation from ATP were not altered by the deletions and substitutions. The results indicate that the Glu40-Ser48 loop, with its appropriate length (but not with specific residues) and with its appropriate junction to A domain, is a critical element for the E1P to E2P transition and formation of the proper structure of E2P, therefore, most likely for the large rotational movement of A domain and resulting in its association with P and N domains. Results further suggest that the loop functions to coordinate this movement of A domain and the unique motion of M1 during the E1P to E2P transition.  相似文献   
128.
129.
A central theme in prion protein research is the detection of the process that underlies the conformational transition from the normal cellular prion form (PrP(C)) to its pathogenic isoform (PrP(Sc)). Although the three-dimensional structures of monomeric and dimeric human prion protein (HuPrP) have been revealed by NMR spectroscopy and x-ray crystallography, the process underlying the conformational change from PrP(C) to PrP(Sc) and the dynamics and functions of PrP(C) remain unknown. The dimeric form is thought to play an important role in the conformational transition. In this study, we performed molecular dynamics (MD) simulations on monomeric and dimeric HuPrP at 300 K and 500 K for 10 ns to investigate the differences in the properties of the monomer and the dimer from the perspective of dynamic and structural behaviors. Simulations were also undertaken with Asp178Asn and acidic pH, which is known as a disease-associated factor. Our results indicate that the dynamics of the dimer and monomer were similar (e.g., denaturation of helices and elongation of the beta-sheet). However, additional secondary structure elements formed in the dimer might result in showing the differences in dynamics and properties between the monomer and dimer (e.g., the greater retention of dimeric than monomeric tertiary structure).  相似文献   
130.
Peroxynitrite (ONOO(-)), a reactive nitrogen species, is capable of nitrating tyrosine residue of proteins. Here we show in vitro evidence that plant phenolic compounds can also be nitrated by an ONOO(-)-independent mechanism. In the presence of NaNO(2), H(2)O(2), and horseradish peroxidase (HRP), monophenolic p-coumaric acid (p-CA, 4-hydroxycinnamic acid) was nitrated to form 4-hydroxy-3-nitrocinnamic acid. The reaction was completely inhibited by KCN, an inhibitor for HRP. The antioxidant ascorbate suppressed p-CA nitration and its suppression time depended strongly on ascorbate concentration. We conclude that nitrogen dioxide radical (NO(2)(radical)), but not ONOO(-), produced by a guaiacol peroxidase is the intermediate for phytophenolic nitration.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号