首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   442篇
  免费   27篇
  2022年   2篇
  2021年   4篇
  2020年   2篇
  2019年   5篇
  2018年   8篇
  2017年   12篇
  2016年   6篇
  2015年   21篇
  2014年   17篇
  2013年   12篇
  2012年   19篇
  2011年   22篇
  2010年   14篇
  2009年   23篇
  2008年   16篇
  2007年   21篇
  2006年   32篇
  2005年   14篇
  2004年   19篇
  2003年   14篇
  2002年   12篇
  2001年   14篇
  2000年   6篇
  1999年   12篇
  1998年   13篇
  1997年   14篇
  1996年   10篇
  1995年   7篇
  1994年   5篇
  1993年   4篇
  1992年   3篇
  1991年   2篇
  1990年   6篇
  1989年   5篇
  1988年   4篇
  1987年   4篇
  1986年   3篇
  1985年   11篇
  1984年   2篇
  1983年   3篇
  1982年   5篇
  1981年   2篇
  1979年   2篇
  1978年   3篇
  1977年   7篇
  1976年   6篇
  1975年   5篇
  1974年   5篇
  1972年   2篇
  1971年   2篇
排序方式: 共有469条查询结果,搜索用时 265 毫秒
61.
Ezrin is a member of the ezrin-radixin-moesin family (ERM) of adapter proteins that are localized at the interface between the cell membrane and the cortical actin cytoskeleton, and they regulate a variety of cellular functions. The structure representing a dormant and closed conformation of an ERM protein has previously been determined by x-ray crystallography. Here, using contrast variation small angle neutron scattering, we reveal the structural changes of the full-length ezrin upon binding to the signaling lipid phosphatidylinositol 4,5-bisphosphate (PIP2) and to F-actin. Ezrin binding to F-actin requires the simultaneous binding of ezrin to PIP2. Once bound to F-actin, the opened ezrin forms more extensive contacts with F-actin than generally depicted, suggesting a possible role of ezrin in regulating the interfacial structure and dynamics between the cell membrane and the underlying actin cytoskeleton. In addition, using gel filtration, we find that the conformational opening of ezrin in response to PIP2 binding is cooperative, but the cooperativity is disrupted by a phospho-mimic mutation S249D in the 4.1-ezrin/radixin/moesin (FERM) domain of ezrin. Using surface plasmon resonance, we show that the S249D mutation weakens the binding affinity and changes the kinetics of 4.1-ERM to PIP2 binding. The study provides the first structural view of the activated ezrin bound to PIP2 and to F-actin.  相似文献   
62.
Among the 22 members of the nucleotide binding-domain, leucine rich repeat-containing (NLR) family, less than half have been functionally characterized. Of those that have been well studied, most form caspase-1 activating inflammasomes. NLRP12 is a unique NLR that has been shown to attenuate inflammatory pathways in biochemical assays and mediate the lymph node homing of activated skin dendritic cells in contact hypersensitivity responses. Since the mechanism between these two important observations remains elusive, we further evaluated the contribution of NLRP12 to organ specific adaptive immune responses by focusing on the lung, which, like skin, is exposed to both exogenous and endogenous inflammatory agents. In models of allergic airway inflammation induced by either acute ovalbumin (OVA) exposure or chronic house dust mite (HDM) antigen exposure, Nlrp12(-/-) mice displayed subtle differences in eosinophil and monocyte infiltration into the airways. However, the overall development of allergic airway disease and airway function was not significantly altered by NLRP12 deficiency. Together, the combined data suggest that NLRP12 does not play a vital role in regulating Th2 driven airway inflammation using common model systems that are physiologically relevant to human disease. Thus, the allergic airway inflammation models described here should be appropriate for subsequent studies that seek to decipher the contribution of NLRP12 in mediating the host response to agents associated with asthma exacerbation.  相似文献   
63.
64.
Characterization of carboxypeptidase A6, an extracellular matrix peptidase   总被引:1,自引:0,他引:1  
Carboxypeptidase A6 (CPA6) is a member of the M14 metallocarboxypeptidase family that is highly expressed in the adult mouse olfactory bulb and broadly expressed in embryonic brain and other tissues. A disruption in the human CPA6 gene is linked to Duane syndrome, a defect in the abducens nerve/lateral rectus muscle connection. In this study the cellular distribution, processing, and substrate specificity of human CPA6 were investigated. The 50-kDa pro-CPA6 is routed through the constitutive secretory pathway, processed by furin or a furin-like enzyme into the 37-kDa active form, and secreted into the extracellular matrix. CPA6 cleaves the C-terminal residue from a range of substrates, including small synthetic substrates, larger peptides, and proteins. CPA6 has a preference for large hydrophobic C-terminal amino acids as well as histidine. Peptides with a penultimate glycine or proline are very poorly cleaved. Several neuropeptides were found to be processed by CPA6, including Met- and Leu-enkephalin, angiotensin I, and neurotensin. Whereas CPA6 converts enkephalin and neurotensin into forms known to be inactive toward their receptors, CPA6 converts inactive angiotensin I into the biologically active angiotensin II. Taken together, these data suggest a role for CPA6 in the regulation of neuropeptides in the extracellular environment within the olfactory bulb and other parts of the brain.  相似文献   
65.
66.
Classical biological control of weeds currently operates under the assumption that biological control agents are safe (i.e., low risk) if they do not directly attack nontarget species. However, recent studies indicate that even highly host-specific biological control agents can impact nontarget species through indirect effects. This finding has profound implications for biological control. To better understand the causes of these interactions and their implications, we evaluate recent case studies of indirect nontarget effects of biological control agents in the context of theoretical work in community ecology. We find that although particular indirect nontarget effects are extremely difficult to predict, all indirect nontarget effects of host specific biological control agents derive from the nature and strength of the interaction between the biological control agent and the pest. Additionally, recent theoretical work suggests that the degree of impact of a biological control agent on nontarget species is proportional to the agent’s abundance, which will be highest for moderately successful control agents. Therefore, the key to safeguarding against indirect nontarget effects of host-specific biological control agents is to ensure the biological control agents are not only host specific, but also efficacious. Biological control agents that greatly reduce their target species while remaining host-specific will reduce their own populations through density-dependent feedbacks that minimize risks to nontarget species.  相似文献   
67.
Centaurea diffusa is one of the most destructive invasive weeds in the western USA and allelopathy appears to contribute to its invasiveness ( Callaway & Aschehoug 2000 ). Here we identify a chemical from the root exudates of C. diffusa, 8‐hydroxyquinoline, not previously reported as a natural product, and find that it varies biogeographically in its natural concentration and its effect as an allelochemical. 8‐Hydroxyquinoline is at least three times more concentrated in C. diffusa‐invaded North American soils than in this weed's native Eurasian soils and has stronger phytotoxic effects on grass species from North America than on grass species from Eurasia. Furthermore, experimental communities built from North American plant species are far more susceptible to invasion by C. diffusa than communities built from Eurasian species, regardless of the biogeographical origin of the soil biota. Sterilization of North American soils suppressed C. diffusa more than sterilization of Eurasian soils, indicating that North American soil biota may also promote invasion by C. diffusa. Eurasian plants and soil microbes may have evolved natural resistance to 8‐hydroxyquinoline while North American plants have not, suggesting a remarkable potential for evolutionary compatibility and homeostasis among plants within natural communities and a mechanism by which exotic weeds destroy these communities.  相似文献   
68.
69.
70.
Allelopathy and exotic plant invasion   总被引:52,自引:0,他引:52  
The primary hypothesis for the astonishing success of many exotics as community invaders relative to their importance in their native communities is that they have escaped the natural enemies that control their population growth – the `natural enemies hypothesis'. However, the frequent failure of introduced biocontrols, weak consumer effects on the growth and reproduction of some invaders, and the lack of consistent strong top-down regulation in many natural ecological systems indicate that other mechanisms must be involved in the success of some exotic plants. One mechanism may be the release by the invader of chemical compounds that have harmful effects on the members of the recipient plant community (i.e., allelopathy). Here, we provide an abbreviated compilation of evidence for allelopathy in general, present a detailed case study for Centaurea diffusa, an invasive Eurasian forb in western North America, and review general evidence for allelopathic effects of invasive plants in native communities. The primary rationale for considering allelopathy as a mechanism for the success of invaders is based on two premises. First, invaders often establish virtual monocultures where diverse communities once flourished, a phenomenon unusual in natural communities. Second, allelopathy may be more important in recipient than in origin communities because the former are more likely to be naïve to the chemicals possessed by newly arrived species. Indeed, results from experiments on C. diffusa suggest that this invader produces chemicals that long-term and familiar Eurasian neighbors have adapted to, but that C. diffusa's new North American neighbors have not. A large number of early studies demonstrated strong potential allelopathic effects of exotic invasive plants; however, most of this work rests on controversial methodology. Nevertheless, during the last 15 years, methodological approaches have improved. Allelopathic effects have been tested on native species, allelochemicals have been tested in varying resource conditions, models have been used to estimate comparisons of resource and allelopathic effects, and experimental techniques have been used to ameliorate chemical effects. We do not recommend allelopathy as a `unifying theory' for plant interactions, nor do we espouse the view that allelopathy is the dominant way that plants interact, but we argue that non-resource mechanisms should be returned to the discussion table as a potential mechanism for explaining the remarkable success of some invasive species. Ecologists should consider the possibility that resource and non-resource mechanisms may work simultaneously, but vary in their relative importance depending on the ecological context in which they are studied. One such context might be exotic plant invasion.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号