首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9525篇
  免费   729篇
  国内免费   2篇
  2023年   53篇
  2022年   50篇
  2021年   168篇
  2020年   173篇
  2019年   215篇
  2018年   268篇
  2017年   223篇
  2016年   325篇
  2015年   553篇
  2014年   551篇
  2013年   676篇
  2012年   831篇
  2011年   765篇
  2010年   510篇
  2009年   461篇
  2008年   560篇
  2007年   531篇
  2006年   518篇
  2005年   472篇
  2004年   438篇
  2003年   358篇
  2002年   340篇
  2001年   83篇
  2000年   65篇
  1999年   84篇
  1998年   113篇
  1997年   87篇
  1996年   63篇
  1995年   60篇
  1994年   65篇
  1993年   63篇
  1992年   41篇
  1991年   40篇
  1990年   43篇
  1989年   38篇
  1988年   31篇
  1987年   26篇
  1986年   23篇
  1985年   29篇
  1984年   38篇
  1983年   22篇
  1982年   27篇
  1981年   25篇
  1980年   14篇
  1979年   13篇
  1978年   13篇
  1976年   13篇
  1975年   16篇
  1974年   10篇
  1973年   11篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
1.
Urinary bladder function consists in the storage and controlled voiding of urine. Translational studies require animal models that match human characteristics, such as Octodon degus, a diurnal rodent. This study aims to characterize the contractility of the detrusor muscle and the morphology and code of the vesical plexus from O. degus. Body temperature was measured by an intra-abdominal sensor, the contractility of detrusor strips was evaluated by isometric tension recording, and the vesical plexus was studied by electrical field stimulation (EFS) and immunofluorescence. The animals showed a diurnal chronotype as judged from core temperature. The myogenic contractile response of the detrusor muscle to increasing doses of KCl reached its maximum (31.04 mN/mm2) at 60 mM. In the case of cumulative dose–response of bethanecol, the maximum response (37.42 mN/mm2) was reached at 3.2 × 10?4 M. The response to ATP was clearly smaller (3.8 mN/mm2). The pharmacological dissection of the EFS-induced contraction identified ACh and sensory fibers as the main contributors to this response. The neurons of the vesical plexus were located mainly in the trigone area, grouped in big and small ganglia. Out of them, 48.1 % of the neurons were nitrergic and 62.7 % cholinergic. Our results show functional and morphological similarities between the urinary bladder of O. degus and that of humans.  相似文献   
2.
Capsaicin has known health beneficial and therapeutic properties. It is also able to enhance the permeability of drugs across epithelial tissues. Unfortunately, due to its pungency the oral administration of capsaicin is limited. To this end, we assessed the effect of nanoencapsulation of capsaicin, under the hypothesis that this would reduce its pungency. Core-shell nanocapsules with an oily core and stabilized with phospholipids were used. This system was used with or without chitosan coating. In this work, we investigated the in vitro release behavior of capsaicin-loaded formulations in different physiological media (including simulated saliva fluid). We also evaluated the influence of encapsulation of capsaicin on the cell viability of buccal cells (TR146). To study the changes in pungency after encapsulation we carried out a sensory analysis with a trained panel of 24 students. The in vitro release study showed that the systems discharged capsaicin slowly in a monotonic manner and that the chitosan coating had an effect on the release profile. The cytotoxic response of TR146 cells to capsaicin at a concentration of 500 μM, which was evident for the free compound, was reduced following its encapsulation. The sensory study revealed that a chitosan coating results in a lower threshold of perception of the formulation. The nanoencapsulation of capsaicin resulted in attenuation of the sensation of pungency significantly. However, the presence of a chitosan shell around the nanoformulations did not mask the pungency, when compared with uncoated systems.  相似文献   
3.
4.
The effect of the alkyl side-chain length on the structural and optoelectronic properties of poly[N-9′-heptadecanyl-27-carbazole-alt-55-(4′,7′-di-2-thienyl-2′,1′,3′-benzothiadiazole)] (PCDTBT) conjugated oligomers have been studied by density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The study was carried out by varying the length of alkyl side-chain attached to the nitrogen atom of the carbazole unit of the PCDTBT oligomers. The structural properties of the optimised oligomers were then studied by determining the bond-length alternation and dihedral angles (Φ) for various side-chain lengths. Total energy calculations for the determination of HOMO energy (EHOMO), LUMO energy (ELUMO), and fundamental energy gap (EGap) were performed using DFT at the B3LYP/6-31G(d), while the first singlet excitation energies (EOpt) were calculated by TD-DFT also at the same level of theory. It was observed that there are no significant structural changes occurring as the alkyl chain lengths are varied. For the electronic properties, very small differences (i.e. ~0.01 eV) were observed for EGap and EOpt while the exciton binding energies (EB) were virtually the same. The results suggest that using shorter alkyl side-chains do not significantly affect the structural and optoelectronic properties of the carbazole-benzothiadiazole based polymer. The observations can aid future computational design studies of analogous systems by reducing large structures thus decreasing computational costs.  相似文献   
5.
6.
Morphometric feces data are used to identify ungulates, but their effectiveness is questioned by numerous authors. Herein, we evaluated the efficiency of this tool in discriminating scat samples from Neotropical deer with sympatric distributions. We performed discriminant analysis of previously identified scat samples (n = 204). The accuracy of discriminant analysis (56–92%) was lower than the confidence limit established in this study in all sympatric combinations expected in these biomes. These results demonstrate serious limitations regarding the use of scat morphometry for species identification of Neotropical deer and reinforce the need to use non-invasive genetic techniques.  相似文献   
7.
The high tropical Andes host one of the richest alpine floras of the world, with exceptionally high levels of endemism and turnover rates. Yet, little is known about the patterns and processes that structure altitudinal and latitudinal variation in plant community diversity. Herein we present the first continental‐scale comparative study of plant community diversity on summits of the tropical Andes. Data were obtained from 792 permanent vegetation plots (1 m2) within 50 summits, distributed along a 4200 km transect; summit elevations ranged between 3220 and 5498 m a.s.l. We analyzed the plant community data to assess: 1) differences in species abundance patterns in summits across the region, 2) the role of geographic distance in explaining floristic similarity and 3) the importance of altitudinal and latitudinal environmental gradients in explaining plant community composition and richness. On the basis of species abundance patterns, our summit communities were separated into two major groups: Puna and Páramo. Floristic similarity declined with increasing geographic distance between study‐sites, the correlation being stronger in the more insular Páramo than in the Puna (corresponding to higher species turnover rates within the Páramo). Ordination analysis (CCA) showed that precipitation, maximum temperature and rock cover were the strongest predictors of community similarity across all summits. Generalized linear model (GLM) quasi‐Poisson regression indicated that across all summits species richness increased with maximum air temperature and above‐ground necromass and decreased on summits where scree was the dominant substrate. Our results point to different environmental variables as key factors for explaining vertical and latitudinal species turnover and species richness patterns on high Andean summits, offering a powerful tool to detect contrasting latitudinal and altitudinal effects of climate change across the tropical Andes.  相似文献   
8.
9.
The interaction between papain and synthetic peptides which tentatively mimic cystatin surfaces was investigated both enzymatically and structurally. Measurements of dissociation equilibrium constants for the interaction of papain with these peptides modified by successive deletions or substitutions demonstrated that the QVVAG segment, which is highly conserved throughout members of the cystatin superfamily, is essential for the interaction. The glycylcontaining (N-terminal) fragments and PW-containing (C-terminal) fragments were found to be of lesser importance, since each could be deleted without significantly modifying the interaction. These fragments improved the stability of the interacting QVVAG region, which appeared to be substrate-like in all peptides tested, as it was cleaved at the A-G bond upon peptide-papain interaction. Replacement of the A residue at the scissile bond of the QVVAG by a blocked cysteinyl residue reduced the rate of cleavage of the susceptible bond and therefore shifted the resulting peptide from a substrate to an inhibitor. Derivatization of this substituted peptide at its N- and C-terminal ends by fluoresceinyl groups resulted in a dramatic decrease in theK i to 0.5 µM. This improvement in the inhibitory properties of the substituted and derivatized peptides was correlated with structural changes as analyzed by molecular dynamic calculations. The results were compared to those proposed for the mechanism of inhibition by natural inhibitors of the cystatin superfamily.  相似文献   
10.
We recently found that Saccharomyces cerevisiae (strain CCMI 885) secretes antimicrobial peptides (AMPs) derived from the glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH) that are active against various wine-related yeast and bacteria. Here, we show that several other S. cerevisiae strains also secrete natural biocide fractions during alcoholic fermentation, although at different levels, which correlates with the antagonistic effect exerted against non-Saccharomyces yeasts. We, therefore, term this biocide saccharomycin. The native AMPs were purified by gel-filtration chromatography and its antimicrobial activity was compared to that exhibited by chemically synthesized analogues (AMP1 and AMP2/3). Results show that the antimicrobial activity of the native AMPs is significantly higher than that of the synthetic analogues (AMP1 and AMP2/3), but a conjugated action of the two synthetic peptides is observed. Moreover, while the natural AMPs are active at pH 3.5, the synthetic peptides are not, since they are anionic and cannot dissolve at this acidic pH. These findings suggest that the molecular structure of the native biocide probably involves the formation of aggregates of several peptides that render them soluble under acidic conditions. The death mechanisms induced by the AMPs were also evaluated by means of epifluorescence microscopy-based methods. Sensitive yeast cells treated with the synthetic AMPs show cell membrane disruption, apoptotic molecular markers, and internalization of the AMPs. In conclusion, our work shows that saccharomycin is a natural biocide secreted by S. cerevisiae whose activity depends on the conjugated action of GAPDH-derived peptides. This study also reveals that S. cerevisiae secretes GAPDH-derived peptides as a strategy to combat other microbial species during alcoholic fermentations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号