首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   6篇
  2018年   3篇
  2016年   2篇
  2015年   2篇
  2014年   4篇
  2013年   2篇
  2012年   3篇
  2011年   3篇
  2010年   3篇
  2009年   2篇
  2008年   4篇
  2007年   2篇
  2006年   1篇
  2005年   2篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  1997年   2篇
排序方式: 共有46条查询结果,搜索用时 34 毫秒
21.
22.
Preparation and basic characterization of polypyrrole-based molecularly imprinted polymer (MIP) for label-free detection of bovine leukemia virus (BLV) glycoprotein gp51 (gp51) is firstly described. Polypyrrole (Ppy) was selected as a matrix for preparation of MIP. Polypyrrole doped by gp51 (gp51/Ppy) was prepared by electrochemical deposition of this polymer on the surface of platinum-black electrode. Then, molecules of gp51 were removed from polymeric backbone and molecularly imprinted polypyrrole (mPpy) was ready for recognition of gp51 in the aqueous solution. Pulsed amperometric detection (PAD) was applied for label-free detection of gp51 in the samples. Anti-gp51 antibodies and secondary antibodies labeled with horseradish peroxidase (HRP) were involved as markers for the control of mPpy preparation procedures. Control experiments were also simultaneously performed by spectrophotometrical detection of HRP activity. Application of anti-gp51 and HRP labelled secondary antibodies confirmed that generation of analytical signal was based on redoping of mPpy by gp51. During our experiments, only few mPpy redoping/dedoping cycles were effective, but generally this method seems to be very effective for the future development of mPpy-based MIPs. Preparation, electrochemical investigation and control procedures are described in the current paper.  相似文献   
23.
The biochemical properties and spatial localization of the protein alpha-dystrobrevin and other isoforms were investigated in cells of the human promyelocytic leukemia line HL-60 granulocytic differentiation as induced by retinoic acid (RA). Alpha-dystrobrevin was detected both in the cytosol and the nuclei of these cells, and a short isoform (gamma-dystrobrevin) was modified by tyrosine phosphorylation soon after the onset of the RA-triggered differentiation. Varying patterns of distribution of alpha-dystrobrevin and its isoforms could be discerned in HL-60 promyelocytes, RA-differentiated mature granulocytes, and human neutrophils. Moreover, the gamma-dystrobrevin isoform was found in association with actin and myosin light chain. The results provide new information about potential involvement of alpha-dystrobrevin and its splice isoforms in signal transduction in myeloid cells during induction of granulocytic differentiation and/or at the commitment stage of differentiation or phagocytic cells.  相似文献   
24.
Type IIS restriction endonucleases (REases) recognize asymmetric DNA sequences and cleave both DNA strands at fixed positions downstream of the recognition site. REase BpuJI recognizes the asymmetric sequence 5′-CCCGT, however it cuts at multiple sites in the vicinity of the target sequence. We show that BpuJI is a dimer, which has two DNA binding surfaces and displays optimal catalytic activity when bound to two recognition sites. BpuJI is cleaved by chymotrypsin into an N-terminal domain (NTD), which lacks catalytic activity but binds specifically to the recognition sequence as a monomer, and a C-terminal domain (CTD), which forms a dimer with non-specific nuclease activity. Fold recognition approach reveals that the CTD of BpuJI is structurally related to archaeal Holliday junction resolvases (AHJR). We demonstrate that the isolated catalytic CTD of BpuJI possesses end-directed nuclease activity and preferentially cuts 3nt from the 3′-terminus of blunt-ended DNA. The nuclease activity of the CTD is repressed in the apo-enzyme and becomes activated upon specific DNA binding by the NTDs. This leads to a complicated pattern of specific DNA cleavage in the vicinity of the target site. Bioinformatics analysis identifies the AHJR-like domain in the putative Type III enzymes and functionally uncharacterized proteins.  相似文献   
25.
Degradation of human aortic elastin in vivo yields a restricted number of differentially sized and charged peptides. Elastin-derived peptides (EDP) can be analyzed by two-dimensional electrophoresis after their extraction from human abdominal aortic tissue by 0.2 M sodium chloride. The peptides were separated according to charge by acetic acid-urea-PAGE and then according to molecular mass by SDS-PAGE. The identity of these peptides as EDP was continued by immunoprecipitation and Western blots. The two-dimensional electrophoretic system can resolve desmosine-like cross-linked EDP of the similar molecular configuration but differing in the number of positively charged amino acid residues. The new separation technique of EDP has the capacity to identify defects in desmosine-like cross-links and may be useful in characterizing abberations in elastin structures.  相似文献   
26.
27.
Phi29 DNA polymerase is a small DNA-dependent DNA polymerase that belongs to eukaryotic B-type DNA polymerases. Despite the small size, the polymerase is a multifunctional proofreading-proficient enzyme. It catalyzes two synthetic reactions (polymerization and deoxynucleotidylation of Phi29 terminal protein) and possesses two degradative activities (pyrophosphorolytic and 3'-->5' DNA exonucleolytic activities). Here we report that Phi29 DNA polymerase exonucleolyticaly degrades ssRNA. The RNase activity acts in a 3' to 5' polarity. Alanine replacements in conserved exonucleolytic site (D12A/D66A) inactivated RNase activity of the enzyme, suggesting that a single active site is responsible for cleavage of both substrates: DNA and RNA. However, the efficiency of RNA hydrolysis is approximately 10-fold lower than for DNA. Phi29 DNA polymerase is widely used in rolling circle amplification (RCA) experiments. We demonstrate that exoribonuclease activity of the enzyme can be used for the target RNA conversion into a primer for RCA, thus expanding application potential of this multifunctional enzyme and opening new opportunities for RNA detection.  相似文献   
28.
Regulation of proteins by light is a new and promising strategy for the external control of biological processes. In this study, we demonstrate the ability to regulate the catalytic activity of the MunI and PvuII restriction endonucleases with light. We used two different approaches to attach a photoremovable caging compound, 2-nitrobenzyl bromide (NBB), to functionally important regions of the two enzymes. First, we covalently attached a caging molecule at the dimer interface of MunI to generate an inactive monomer. Second, we attached NBB at the DNA binding site of the single-chain variant of PvuII (scPvuII) to prevent binding and cleavage of the DNA substrate. Upon removal of the caging group by UV irradiation, nearly 50% of the catalytic activity of MunI and 80% of the catalytic activity of PvuII could be restored.  相似文献   
29.
The stress-sensitive restriction-modification (RM) system CglI from Corynebacterium glutamicum and the homologous NgoAVII RM system from Neisseria gonorrhoeae FA1090 are composed of three genes: a DNA methyltransferase (M.CglI and M.NgoAVII), a putative restriction endonuclease (R.CglI and R.NgoAVII, or R-proteins) and a predicted DEAD-family helicase/ATPase (N.CglI and N.NgoAVII or N-proteins). Here we report a biochemical characterization of the R- and N-proteins. Size-exclusion chromatography and SAXS experiments reveal that the isolated R.CglI, R.NgoAVII and N.CglI proteins form homodimers, while N.NgoAVII is a monomer in solution. Moreover, the R.CglI and N.CglI proteins assemble in a complex with R2N2 stoichiometry. Next, we show that N-proteins have ATPase activity that is dependent on double-stranded DNA and is stimulated by the R-proteins. Functional ATPase activity and extensive ATP hydrolysis (∼170 ATP/s/monomer) are required for site-specific DNA cleavage by R-proteins. We show that ATP-dependent DNA cleavage by R-proteins occurs at fixed positions (6–7 nucleotides) downstream of the asymmetric recognition sequence 5′-GCCGC-3′. Despite similarities to both Type I and II restriction endonucleases, the CglI and NgoAVII enzymes may employ a unique catalytic mechanism for DNA cleavage.  相似文献   
30.
Hepatitis C virus (HCV) infection results in the activation of numerous stress responses including oxidative stress, with the potential to induce an apoptotic state. Previously we have shown that HCV attenuates the stress-induced, p38MAPK-mediated up-regulation of the K+ channel Kv2.1, to maintain the survival of infected cells in the face of cellular stress. We demonstrated that this effect was mediated by HCV non-structural 5A (NS5A) protein, which impaired p38MAPK activity through a polyproline motif-dependent interaction, resulting in reduction of phosphorylation activation of Kv2.1. In this study, we investigated the host cell proteins targeted by NS5A to mediate Kv2.1 inhibition. We screened a phage-display library expressing the entire complement of human SH3 domains for novel NS5A-host cell interactions. This analysis identified mixed lineage kinase 3 (MLK3) as a putative NS5A interacting partner. MLK3 is a serine/threonine protein kinase that is a member of the MAPK kinase kinase (MAP3K) family and activates p38MAPK. An NS5A-MLK3 interaction was confirmed by co-immunoprecipitation and Western blot analysis. We further demonstrate a novel role of MLK3 in the modulation of Kv2.1 activity, whereby MLK3 overexpression leads to the up-regulation of channel activity. Accordingly, coexpression of NS5A suppressed this stimulation. Additionally we demonstrate that overexpression of MLK3 induced apoptosis, which was also counteracted by NS5A. We conclude that NS5A targets MLK3 with multiple downstream consequences for both apoptosis and K+ homeostasis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号