首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Bse634I restriction endonuclease is a tetramer and belongs to the type IIF subtype of restriction enzymes. It requires two recognition sites for its optimal activity and cleaves plasmid DNA with two sites much faster than a single-site DNA. We show that disruption of the tetramerisation interface of Bse634I by site-directed mutagenesis converts the tetrameric enzyme into a dimer. Dimeric W228A mutant cleaves plasmid DNA containing one or two sites with the same efficiency as the tetramer cleaves the two-site plasmid. Hence, the catalytic activity of the Bse634I tetramer on a single-site DNA is down-regulated due to the cross-talking interactions between the individual dimers. The autoinhibition within the Bse634I tetramer is relieved by bridging two DNA copies into the synaptic complex that promotes fast and concerted cleavage at both sites. Cleavage analysis of the oligonucleotide attached to the solid support revealed that Bse634I is able to form catalytically competent synaptic complexes by bridging two molecules of the cognate DNA, cognate DNA-miscognate DNA and cognate DNA-product DNA. Taken together, our data demonstrate that a single W228A mutation converts a tetrameric type IIF restriction enzyme Bse634I into the orthodox dimeric type IIP restriction endonuclease. However, the stability of the dimer towards chemical denaturants, thermal inactivation and proteolytic degradation are compromised.  相似文献   

2.
Restriction endonuclease Bse634I recognizes and cleaves the degenerate DNA sequence 5'-R/CCGGY-3' (R stands for A or G; Y for T or C, '/' indicates a cleavage position). Here, we report the crystal structures of the Bse634I R226A mutant complexed with cognate oligoduplexes containing ACCGGT and GCCGGC sites, respectively. In the crystal, all potential H-bond donor and acceptor atoms on the base edges of the conserved CCGG core are engaged in the interactions with Bse634I amino acid residues located on the α6 helix. In contrast, direct contacts between the protein and outer base pairs are limited to van der Waals contact between the purine nucleobase and Pro203 residue in the major groove and a single H-bond between the O2 atom of the outer pyrimidine and the side chain of the Asn73 residue in the minor groove. Structural data coupled with biochemical experiments suggest that both van der Waals interactions and indirect readout contribute to the discrimination of the degenerate base pair by Bse634I. Structure comparison between related enzymes Bse634I (R/CCGGY), NgoMIV (G/CCGGC) and SgrAI (CR/CCGGYG) reveals how different specificities are achieved within a conserved structural core.  相似文献   

3.
B Ward 《Nucleic acids research》1996,24(12):2435-2440
A method is described to measure triple helix dissociation constants by inhibiting the cleavage of a plasmid constructed to contain a target sequence for the triplex forming oligonucleotide (TFO) dT20 by the type IIS restriction enzyme Eco57I. The method relies upon the TFO's ability to block the cleavage reaction by occupying the enzymes cleavage site but not its specific binding sequence. Using this protocol, the dissociation constant for dT20 bound to its target was 0.16 +/- 0.01 microM at 25 degrees C. The accuracy of this experiment was demonstrated by measuring the Kd of an affinity cleavage TFO using Eco57I and Quantitative Affinity Cleavage Titration. Type IIS restriction endonuclease footprinting should be useful for the qualitative and quantitative investigation of ligand-DNA interactions.  相似文献   

4.
Restriction endonuclease Bse634I is a homotetramer arranged as a dimer of two primary dimers. Bse634I displays its maximum catalytic efficiency upon binding of two copies of cognate DNA, one per each primary dimer. The catalytic activity of Bse634I on a single DNA copy is down-regulated due to the cross-talking interactions between the primary dimers. The mechanism of signal propagation between the individual active sites of Bse634I remains unclear. To identify communication pathways involved in the catalytic activity regulation of Bse634I tetramer we mutated a selected set of amino acid residues at the dimer-dimer interface and analysed the oligomeric state and catalytic properties of the mutant proteins. We demonstrate that alanine replacement of N262 and V263 residues located in the loop at the tetramerisation interface did not inhibit tetramer assembly but dramatically altered the catalytic properties of Bse634I despite of the distal location from the active site. Kinetic analysis using cognate hairpin oligonucleotide and one and two-site plasmids as substrates allowed us to identify two types of communication signals propagated through the dimer-dimer interface in the Bse634I tetramer: the inhibitory, or "stopper" and the activating, or "sync" signal. We suggest that the interplay between the two signals determines the catalytic and regulatory properties of the Bse634I and mutant proteins.  相似文献   

5.
M Zaremba  G Sasnauskas  V Siksnys 《FEBS letters》2012,586(19):3324-3329
Type II restriction endonucleases (REases) exist in multiple oligomeric forms. The tetrameric REases have two DNA binding interfaces and must synapse two recognition sites to achieve cleavage. It was hypothesised that binding of two recognition sites by tetrameric enzymes contributes to their fidelity. Here, we experimentally determined the fidelity for Bse634I REase in different oligomeric states. Surprisingly, we find that tetramerisation does not increase REase fidelity in comparison to the dimeric variant. Instead, an inherent ability to act concertedly at two sites provides tetrameric REase with a safety-catch to prevent host DNA cleavage if a single unmodified site becomes available.  相似文献   

6.
Rigden DJ 《FEBS letters》2002,518(1-3):17-22
A catalytic sequence motif PDX10-30(E/D)XK is found in many restriction enzymes. On the basis of sequence similarities and mapping of the conserved residues to the crystal structure of NgoMIV we suggest that residues D160, K182, R186, R188 and E195 contribute to the catalytic/DNA binding site of the Ecl18kI restriction endonuclease. Mutational analysis confirms the functional significance of the conserved residues of Ecl18kI. Therefore, we conclude that the active site motif 159VDX21KX12E of Ecl18kI differs from the canonical PDX10-30(E/D)XK motif characteristic for most of the restriction enzymes. Moreover, we propose that two subfamilies of endonucleases Ecl18kI/PspGI/EcoRII and Cfr10I/Bse634I/NgoMIV, specific, respectively, for CCNGG/CCWGG and RCCGGY/GCCGGC sites, share conserved active site architecture and DNA binding elements.  相似文献   

7.
The homing endonuclease I-Ssp6803I causes the insertion of a group I intron into a bacterial tRNA gene-the only example of an invasive mobile intron within a bacterial genome. Using a computational fold prediction, mutagenic screen and crystal structure determination, we demonstrate that this protein is a tetrameric PD-(D/E)-XK endonuclease - a fold normally used to protect a bacterial genome from invading DNA through the action of restriction endonucleases. I-Ssp6803I uses its tetrameric assembly to promote recognition of a single long target site, whereas restriction endonuclease tetramers facilitate cooperative binding and cleavage of two short sites. The limited use of the PD-(D/E)-XK nucleases by mobile introns stands in contrast to their frequent use of LAGLIDADG and HNH endonucleases - which in turn, are rarely incorporated into restriction/modification systems.  相似文献   

8.
Amsacrine-4-carboxamide-oligonucleotide conjugates were synthesized and studied for their capacity to form DNA triple helices and to alter human topoisomerase II binding and cleavage properties. The intercalating agent was attached to the 3'- or the 5'-end of a 24 nt triple helix-forming oligonucleotide via linkers of different lengths. The stability of these DNA triple helices was investigated by gel retardation and melting temperature studies using a synthetic 70 bp DNA duplex target. The effect of the conjugates on DNA cleavage by topoisomerase II was evaluated using the 70 bp duplex and a 311 bp restriction fragment containing the same triple helix site. The conjugate with the amsacrine derivative linked to the 3' end of the TFO via a hexaethylene glycol linker modulates the extent of DNA cleavage by topoisomerase II at specific sites.  相似文献   

9.
Abstract

Amsacrine-4-carboxamide-oligonucleotide conjugates were synthesized and studied for their capacity to form DNA triple helices and to alter human topoisomerase II binding and cleavage properties. The intercalating agent was attached to the 3′- or the 5′-end of a 24 nt triple helix-forming oligonucleotide via linkers of different lengths. The stability of these DNA triple helices was investigated by gel retardation and melting temperature studies using a synthetic 70 bp DNA duplex target. The effect of the conjugates on DNA cleavage by topoisomerase II was evaluated using the 70 bp duplex and a 311 bp restriction fragment containing the same triple helix site. The conjugate with the amsacrine derivative linked to the 3′ end of the TFO via a hexaethylene glycol linker modulates the extent of DNA cleavage by topoisomerase II at specific sites.  相似文献   

10.
Type IIS restriction endonuclease Eco31I is a "short-distance cutter", which cleaves DNA strands close to its recognition sequence, 5'-GGTCTC(1/5). Previously, it has been proposed that related endonucleases recognizing a common sequence core GTCTC possess two active sites for cleavage of both strands in the DNA substrate. Here, we present bioinformatic identification and experimental evidence for a single nuclease active site. We identified a short region of homology between Eco31I and HNH nucleases, constructed a three-dimensional model of the putative catalytic domain and validated our predictions by random and site-specific mutagenesis. The restriction mechanism of Eco31I is suggested by analogy to the mechanisms of phage T4 endonuclease VII and homing endonuclease I-PpoI. We propose that residues D311 and N334 coordinate the cofactor. H312 acts as a general base-activating water molecule for the nucleophilic attack. K337 together with R340 and D345 are located in close proximity to the active center and are essential for correct folding of catalytic motif, while D345 together with R264 and D273 could be directly involved in DNA binding. We also predict that the Eco31I catalytic domain contains a putative Zn-binding site, which is essential for its structural integrity. Our results suggest that the HNH-like active site is involved in the cleavage of both strands in the DNA substrate. On the other hand, analysis of site-specific mutants in the region, previously suggested to harbor the second active site, revealed its irrelevance to the nuclease activity. Thus, our data argue against the earlier prediction and indicate the presence of a single conserved active site in type IIS restriction endonucleases that recognize common sequence core GTCTC.  相似文献   

11.
Type I restriction endonucleases are composed of three subunits, HsdR, HsdM and HsdS. The HsdR subunit is absolutely required for restriction activity; while an independent methylase is composed of HsdM and HsdS subunits. DNA cleavage is associated with a powerful ATPase activity during which DNA is translocated by the enzyme prior to cleavage. The presence of a Walker type I ATP-binding site within the HsdR subunit suggested that the subunit may be capable of independent enzymatic activity. Therefore, we have, for the first time, cloned and over-expressed the hsdRgene of the type IC restriction endonuclease EcoR124II. The purified HsdR subunit was found to be a soluble monomeric protein capable of DNA- and Mg2+-dependent ATP hydrolysis. The subunit was found to have a weak nuclease activity both in vivo and in vitro, and to bind plasmid DNA; although was not capable of binding a DNA oligoduplex. We were also able to reconstitute the fully active endonuclease from purified M. EcoR124I and HsdR. This is the first clear demonstration that the HsdR subunit of a type I restriction endonuclease is capable of independent enzyme activity, and suggests a mechanism for the evolution of the endonuclease from the independent methylase.  相似文献   

12.
13.
Specific cleavage of large DNA molecules at few sites, necessary for the analysis of genomic DNA or for targeting individual genes in complex genomes, requires endonucleases of extremely high specificity. Restriction endonucleases (REase) that recognize DNA sequences of 4-8 bp are not sufficiently specific for this purpose. In principle, the specificity of REases can be extended by fusion to sequence recognition modules, e.g. specific DNA-binding domains or triple-helix forming oligonucleotides (TFO). We have chosen to extend the specificity of REases using TFOs, given the combinatorial flexibility this fusion offers in addressing a short, yet precisely recognized restriction site next to a defined triple-helix forming site (TFS). We demonstrate here that the single chain variant of PvuII (scPvuII) covalently coupled via the bifunctional cross-linker N-(gamma-maleimidobutryloxy) succinimide ester to a TFO (5'-NH2-[CH2](6 or 12)-MPMPMPMPMPPPPPPT-3', with M being 5-methyl-2'-deoxycytidine and P being 5-[1-propynyl]-2'-deoxyuridine), cleaves DNA specifically at the recognition site of PvuII (CAGCTG) if located in a distance of approximately one helical turn to a TFS (underlined) complementary to the TFO ('addressed' site: 5'-TTTTTTTCTCTCTCTCN(approximately 10)CAGCTG-3'), leaving 'unaddressed' PvuII sites intact. The preference for cleavage of an 'addressed' compared to an 'unaddressed' site is >1000-fold, if the cleavage reaction is initiated by addition of Mg2+ ions after preincubation of scPvuII-TFO and substrate in the absence of Mg2+ ions to allow triple-helix formation before DNA cleavage. Single base pair substitutions in the TFS prevent addressed DNA cleavage by scPvuII-TFO.  相似文献   

14.
Tethering of BBZPNH2, an analogue of the Hoechst 33258, with a 14 nucleotide long DNA sequence with the help of succinimidyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (SMCC), a heterobifunctional crosslinking reagent, using DMF/ water as solvent yields a conjugate which effectively stabilizes the triple helix. The above conjugate was hybridized with 26 bp long double stranded (ds) DNA having 14 bp long polypurine-polypyrimidine stretch to form a pyrimidine motif triple helix. The above conjugate increases the thermal stability of both the transitions, that is, triple helix to double helix by 12 degrees C and double helix to single strand transition by 16 degrees C for the triple helix formed with conjugated TFO over the triple helix made from non-conjugated TFO. Fluorescence and circular dichroism spectra recorded at different temperatures confirm the presence of minor groove binding bisbenzimidazole in the AT-rich minor groove of dsDNA even after the major groove bound TFO separates out.  相似文献   

15.
Restriction endonucleases are highly specific in recognizing the particular DNA sequence they act on. However, their activity is affected by sequence context, enzyme concentration and buffer composition. Changes in these factors may lead to either ineffective cleavage at the cognate restriction site or relaxed specificity allowing cleavage of degenerate ‘star’ sites. Additionally, uncharacterized restriction endonucleases and engineered variants present novel activities. Traditionally, restriction endonuclease activity is assayed on simple substrates such as plasmids and synthesized oligonucleotides. We present and use high-throughput Illumina sequencing-based strategies to assay the sequence specificity and flanking sequence preference of restriction endonucleases. The techniques use fragmented DNA from sequenced genomes to quantify restriction endonuclease cleavage on a complex genomic DNA substrate in a single reaction. By mapping millions of restriction site–flanking reads back to the Escherichia coli and Drosophila melanogaster genomes we were able to quantitatively characterize the cognate and star site activity of EcoRI and MfeI and demonstrate genome-wide decreases in star activity with engineered high-fidelity variants EcoRI-HF and MfeI-HF, as well as quantify the influence on MfeI cleavage conferred by flanking nucleotides. The methods presented are readily applicable to all type II restriction endonucleases that cleave both strands of double-stranded DNA.  相似文献   

16.
Zinc-finger nucleases and TALE nucleases are produced by combining a specific DNA-binding module and a non-specific DNA-cleavage module, resulting in nucleases able to cleave DNA at a unique sequence. Here a new approach for creating highly specific nucleases was pursued by fusing a catalytically inactive variant of the homing endonuclease I-SceI, as DNA binding-module, to the type IIP restriction enzyme PvuII, as cleavage module. The fusion enzymes were designed to recognize a composite site comprising the recognition site of PvuII flanked by the recognition site of I-SceI. In order to reduce activity on PvuII sites lacking the flanking I-SceI sites, the enzymes were optimized so that the binding of I-SceI to its sites positions PvuII for cleavage of the composite site. This was achieved by optimization of the linker and by introducing amino acid substitutions in PvuII which decrease its activity or disturb its dimer interface. The most specific variant showed a more than 1000-fold preference for the addressed composite site over an unaddressed PvuII site. These results indicate that using a specific restriction enzyme, such as PvuII, as cleavage module, offers an alternative to the otherwise often used catalytic domain of FokI, which by itself does not contribute to the specificity of the engineered nuclease.  相似文献   

17.
The three-dimensional X-ray crystal structure of the ‘rare cutting’ type II restriction endonuclease SgrAI bound to cognate DNA is presented. SgrAI forms a dimer bound to one duplex of DNA. Two Ca2+ bind in the enzyme active site, with one ion at the interface between the protein and DNA, and the second bound distal from the DNA. These sites are differentially occupied by Mn2+, with strong binding at the protein–DNA interface, but only partial occupancy of the distal site. The DNA remains uncleaved in the structures from crystals grown in the presence of either divalent cation. The structure of the dimer of SgrAI is similar to those of Cfr10I, Bse634I and NgoMIV, however no tetrameric structure of SgrAI is observed. DNA contacts to the central CCGG base pairs of the SgrAI canonical target sequence (CR|CCGGYG, | marks the site of cleavage) are found to be very similar to those in the NgoMIV/DNA structure (target sequence G|CCGGC). Specificity at the degenerate YR base pairs of the SgrAI sequence may occur via indirect readout using DNA distortion. Recognition of the outer GC base pairs occurs through a single contact to the G from an arginine side chain located in a region unique to SgrAI.  相似文献   

18.
Cleavage of pBR322 DNA I by the restriction endonuclease HinfI is preferentially inhibited at specific HinfI cleavage sites. These sites in pBR322 DNA I have been identified and ordered with respect to the frequency with which they are cleaved. The HinfI site most resistant to cleavage in pBR322 DNA I is unique in that runs of G-C base pairs are immediately adjacent on both sites. Two differently permuted linear (DNA III) species were produced by cleavage with two different restriction endonucleases, PstI and AvaI. Only one of these linear molecules, that produced by PstI, exhibits the same preferential cleavage pattern as DNA I. The second linear species, that arising from AvaI digestion, shows pronounced relative inhibition of cleavage at the HinfI sites nearest the ends of the molecule (100 to 120 base pairs away, respectively). This result suggest that proximity to the termini of a linear DNA molecule might also influence preferential cleavage. The possibility of formation of stem-loop structures does not appear to influence preferential cleavage by HinfI.  相似文献   

19.
Plasmid pGC20 containing the (dGC)9 insert in SmaI recognition site has been used to study the inhibition of cleavage by different restriction endonuclease due to Z-DNA formation in (dCG)10 sequence of the negatively supercoiled plasmid. Data obtained indicate the different sensitivity of restriction endonucleases to DNA conformational perturbations resulted from the Z-DNA formation. Therefore, the inhibition of DNA cleavage by a particular restriction endonuclease cannot serve as a criterion for the estimation of the length of B-Z junctions in circular supercoiled DNAs.  相似文献   

20.
Holliday junctions are intermediate structures that are formed and resolved during the process of genetic recombination. To investigate the interaction of junction-resolving nucleases with synthetic Holliday junctions that contain homologous arm sequences, we constructed substrates in which the junction point was free to branch migrate through 26 base-pairs of homology. In the absence of divalent cations, we found that both phage T4 endonuclease VII and phage T7 endonuclease I bound the synthetic junctions to form specific protein-DNA complexes. Such complexes were not observed in the presence of Mg2+, since the Holliday junctions were resolved by the introduction of symmetrical cuts in strands of like polarity. The major sites of cleavage were identified and found to occur within the boundaries of homology. T4 endonuclease VII showed a cleavage preference for the 3' side of thymine bases, whereas T7 endonuclease I preferentially cut the DNA between two pyrimidine residues. However, cleavage was not observed at all the available sites, indicating that in addition to their structural requirements, the endonucleases show strong site preferences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号