首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   274篇
  免费   5篇
  国内免费   13篇
  2022年   1篇
  2021年   2篇
  2020年   6篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2016年   10篇
  2015年   8篇
  2014年   12篇
  2013年   25篇
  2012年   10篇
  2011年   15篇
  2010年   13篇
  2009年   18篇
  2008年   23篇
  2007年   22篇
  2006年   14篇
  2005年   9篇
  2004年   18篇
  2003年   16篇
  2002年   5篇
  2001年   3篇
  2000年   9篇
  1999年   7篇
  1998年   8篇
  1997年   4篇
  1996年   4篇
  1995年   2篇
  1994年   5篇
  1993年   1篇
  1991年   6篇
  1989年   1篇
  1988年   2篇
  1986年   1篇
  1983年   1篇
  1981年   1篇
  1980年   1篇
排序方式: 共有292条查询结果,搜索用时 31 毫秒
1.
Abstract A screening procedure for highly thermostable yeast superoxide dismutase was developed. Growth yields at various temperatures were estimated for ten mesophilic and thermotolerant strains, belonging to the genera Saccharomyces, Kluyveromyces and Pichia . Higher yields at 45°C were obtained for K. lactis 90-3 and 90-4. A correlation between the ability to grow at higher temperature and the thermostability of the superoxide dismutase enzyme synthesized was observed. A comparison of the operational stability of the superoxide dismutase of all tested strains suggests that the enzyme of K. lactis strains was more thermostable than that of the other tested microorganisms.  相似文献   
2.
Summary Hybrid (1-3,1-4)--glucanase genes were constructed by extension of overlapping segments of the (1-3,1-4)--glucanase genes from Bacillus amyloliquefaciens and B. macerans generated by the polymerase chain reaction (PCR). Four hybrid genes were expressed in Escherichia coli cells. The mature hybrid enzymes contain a 16, 36, 78, or 152 amino acid N-terminal sequence derived from B. amyloliquefaciens (1-3,1-4)--glucanase followed by a C-terminal segment derived from B. macerans (1-3,1-4)--glucanase. Biochemical characterization of parental and hybrid enzymes shows a significant increase in thermostability of three of the hybrid enzymes when exposed to an acidic environment thus combining two important enzyme characteristics within the same molecule. At pH 4.1, 85%-95% of the initial activity was retained after 1 h at 65° C in contrast to 5% and 0% for the parental enzymes from B. amyloliquefaciens and B. macerans. After 60 min incubation at 70° C, pH 6.0, the parental enzymes retained 5% or less of the initial activity whilst one of the hybrids still exhibited 90% of the initial activity. Of the parental enzymes B. macerans (1-3,1-4)--glucanase had the lower specific activity while the hybrid enzymes exhibited specific activities that were 1.5- to 3-fold higher. These experimental results demonstrate that exchange of homologous gene segments from different species may be a useful technique for obtaining new and improved versions of biologically active proteins.Abbreviations AMY mature form of Bacillus amyloliquefaciens (1-3,1-4)--glucanase; - MAC mature form of B. macerans (1-3,1-4)--glucanase - SUB mature form of B. subtilis (1-3,1-4)--glucanase - H(A16-M), H(A36-M), H(A78-M), H(A107-M), H(A152-M) mature forms of hybrid enzymes having 16, 36, 78, 107, 152 N-terminal amino acids, respectively, derived from AMY with the remaining amino acids derived from MAC  相似文献   
3.
Summary Heavy meromyosin subfragment-1 (S1) was prepared by -chymotrypsin from myosin of carp acclimated to either 10°C or 30°C for a minimum of 5 weeks. The objective of these studies was to document thermally-induced changes in the myosin molecule and to extend previous observations. Ca2+- and K+ (EDTA)-ATPase activities of cold-acclimated carp S1 were 1.1 and 0.8 mol Pi·min-1·mg-1, respectively, and these values did not differ significantly from those of warm-acclimated carp. The inactivation rate constant (KD) of S1 from cold-acclimated carp was 32.1x10-4· s-1, compared to 13.2x10-4·s-1 for warm-acclimated carp. The maximum initial velocity of acto-S1 Mg2+-ATPase activity at pH 7.0 in 0.05 M KCl was 9.3 s-1 with cold-acclimated carp, about 3.7 times higher than that for warm-acclimated carp. However, no significant difference was observed in the apparent affinity of S1 to actin. Peptides maps of the heavy chain of S1 were different and suggested distinct isoforms for the myosins from warm- and cold-acclimated muscle.Abbreviations ATPase adenosine 5-triphosphatase - DTNB 5,5-dithiobis (2-nitrobenzoic acid) - DTT dithiothreitol - EDTA ethylenediaminetetraacetic acid - EGTA ethyleneglycol bis (-aminoethylether)-N,N,N,N-tetraacetic acid - K D inactivation rate constant - K m apparent dissociation constant - P i inorganic -phosphate - PMSF phenylmethane-sulfonyl fluoride - S 1 heavy meromyosin subfragment-1 - SDS sodium dodecyl sulfate - SDS-PAGE SDS-polyacrylamide gel electrophoresis - TPCK N-tosyl-l-phenylalanyl chloromethyl ketone - V max maximum initial velocity  相似文献   
4.
Summary Amino acid residues of the carboxyl-terminal region of kanamycin nucleotidyltransferase were modified using segment-directed mutagenesis. Six different mutant enzymes with single amino acid replacements were selected out of 59 clones by DNA sequence analyses. The mutant enzymes were purified and it was found that the thermostability of one mutant enzyme was identical to the wild type, whereas the other five were less thermostable at varying degrees. The data suggested that changes in the enzyme thermostability depend not only on the position but also on the species of amino acid residue replaced.  相似文献   
5.
In chemostat cultures of Bacillus caldolyticus, adaptation in a single step from 70–100°C was followed under aerobic and oxygen-limited conditions and was found to proceed more smoothly under the latter circumstances. Variations of the medium (e.g. yeast extract or silicate concentrations) showed that growth at 100°C is in all respects similar to that of cultures at moderate temperatures.Enzyme preparations derived from cultures at 5°C intervals between 70 and 100°C were used to determine the temperature range. For all nine enzymes tested, the optimum temperature was found to be 67°C; the latter was independent of the growth temperature. Differences were found, however, with respect to the maximum temperature of individual enzymes, and three groups, with maxima between 70 and 80°C, 80 and 90°C and 90 and 100°C can be distinguished. Again, there was no correlation with the growth temperature.Stability experiments also revealed that enzymes from the same organism can have different thermal properties: Some were found to be quite thermolabile (e.g. the pyruvate kinase), while others (e.g. hexokinase and glutamate-pyruvate transaminase) exhibited a high thermostability. These properties were not related to the growth temperature within the 70–100°C range, too.Six of the enzymes tested could be stabilized by their respective substrates, but the degree of protection varied for individual enzymes. Three enzymes (acetate kinase, glutamate dehydrogenase and myokinase) could not be stabilized by their substrates.Comparative experiments with the hexokinase suggested, that the thermal integrity of the enzymes is better protected within the cell as compared to the stability of the enzyme preparations.Abbreviations used AK acetate kinase - Ala-DH alanine dehydrogenase - Ald aldolase - GIDH glutamate dehydrogenase - G6P-DH glucose-6-phosphate dehydrogenase - GTP glutamate-pyruvate transaminase - HK hexokinase - ICDH isocitrate dehydrogenase - MK myokinase - PK pyruvate kinase  相似文献   
6.
Protein glycosylation is a common post-translational modification, the effect of which on protein conformational and stability is incompletely understood. Here we have investigated the effects of glycosylation on the thermostability of Bacillus subtilis xylanase A (XynA) expressed in Pichia pastoris. Intact mass analysis of the heterologous wild-type XynA revealed two, three, or four Hex8–16GlcNAc2 modifications involving asparagine residues at positions 20, 25, 141, and 181. Molecular dynamics (MD) simulations of the XynA modified with various combinations of branched Hex9GlcNAc2 at these positions indicated a significant contribution from protein-glycan interactions to the overall energy of the glycoproteins. The effect of glycan content and glycosylation position on protein stability was evaluated by combinatorial mutagenesis of all six potential N-glycosylation sites. The majority of glycosylated enzymes expressed in P. pastoris presented increased thermostability in comparison with their unglycosylated counterparts expressed in Escherichia coli. Steric effects of multiple glycosylation events were apparent, and glycosylation position rather than the number of glycosylation events determined increases in thermostability. The MD simulations also indicated that clustered glycan chains tended to favor less stabilizing glycan-glycan interactions, whereas more dispersed glycosylation patterns favored stabilizing protein-glycan interactions.  相似文献   
7.
The presence of aromatic clusters has been found to be an integral feature of many proteins isolated from thermophilic microorganisms. Residues found in aromatic cluster interact via π–π or C–H?π bonds between the phenyl rings, which are among the weakest interactions involved in protein stability. The lone aromatic cluster in human carbonic anhydrase II (HCA II) is centered on F226 with the surrounding aromatics F66, F95 and W97 located 12 Å posterior the active site; a location which could facilitate proper protein folding and active site construction. The role of F226 in the structure, catalytic activity and thermostability of HCA II was investigated via site-directed mutagenesis of three variants (F226I/L/W) into this position. The measured catalytic rates of the F226 variants via 18O-mass spectrometry were identical to the native enzyme, but differential scanning calorimetry studies revealed a 3–4 K decrease in their denaturing temperature. X-ray crystallographic analysis suggests that the structural basis of this destabilization is via disruption and/or removal of weak C–H?π interactions between F226 to F66, F95 and W97. This study emphasizes the importance of the delicate arrangement of these weak interactions among aromatic clusters in overall protein stability.  相似文献   
8.
The molecular integrity of the active site of phytases from fungi is critical for maintaining phytase function as efficient catalytic machines. In this study, the molecular dynamics (MD) of two monomers of phytase B from Aspergillus niger, the disulfide intact monomer (NAP) and a monomer with broken disulfide bonds (RAP), were simulated to explore the conformational basis of the loss of catalytic activity when disulfide bonds are broken. The simulations indicated that the overall secondary and tertiary structures of the two monomers were nearly identical but differed in some crucial secondary–structural elements in the vicinity of the disulfide bonds and catalytic site. Disulfide bonds stabilize the β-sheet that contains residue Arg66 of the active site and destabilize the α-helix that contains the catalytic residue Asp319. This stabilization and destabilization lead to changes in the shape of the active–site pocket. Functionally important hydrogen bonds and atomic fluctuations in the catalytic pocket change during the RAP simulation. None of the disulfide bonds are in or near the catalytic pocket but are most likely essential for maintaining the native conformation of the catalytic site.

Abbreviations

PhyB - 2.5 pH acid phophatese from Aspergillus niger, NAP - disulphide intact monomer of Phytase B, RAP - disulphide reduced monomer of Phytase B, Rg - radius of gyration, RMSD - root mean square deviation, MD - molecular dynamics.  相似文献   
9.
The human B12 trafficking chaperone hCblC is well conserved in mammals and non-mammalian eukaryotes. However, the C-terminal ∼40 amino acids of hCblC vary significantly and are predicted to be deleted by alternative splicing of the encoding gene. In this study, we examined the thermostability of the bovine CblC truncated at the C-terminal variable region (t-bCblC) and its regulation by glutathione. t-bCblC is highly thermolabile (Tm = ∼42℃) similar to the full-length protein (f-bCblC). However, t-bCblC is stabilized to a greater extent than f-bCblC by binding of reduced glutathione (GSH) with increased sensitivity to GSH. In addition, binding of oxidized glutathione (GSSG) destabilizes t-bCblC to a greater extent and with increased sensitivity as compared to f-bCblC. These results indicate that t-bCblC is a more sensitive form to be regulated by glutathione than the full-length form of the protein. [BMB Reports 2013; 46(3): 169-174]  相似文献   
10.
This study aimed to obtain xylanase exhibiting improved enzyme properties to satisfy the requirements for industrial applications. The baxA gene encoding Bacillus amyloliquefaciens xylanase A was mutated by error-prone touchdown PCR. The mutant, pCbaxA50, was screened from the mutant library by using the 96-well plate high-throughput screening method. Sequence alignment revealed the identical mutation point S138T in xylanase (reBaxA50) produced by the pCbaxA50. The specific activity of the purified reBaxA50 was 9.38 U/mg, which was 3.5 times higher than that of its parent expressed in Escherichia coli BL21 (DE3), named reBaxA. The optimum temperature of reBaxA and reBaxA50 were 55 °C and 50 °C, respectively. The optimum pH of reBaxA and reBaxA50 were pH 6 and pH 5, respectively. Moreover, reBaxA50 was more stable than reBaxA under thermal and extreme pH treatment. The half-life at 60 °C and apparent melting temperature of reBaxA50 were 9.74 min and 89.15 °C, respectively. High-performance liquid chromatography showed that reBaxA50 released xylooligosaccharides from oat spelt, birchwood, and beechwood xylans, with xylotriose as the major product; beechwood xylan was also the most thoroughly hydrolyzed. This study demonstrated that the S138T mutation possibly improved the catalytic activity and thermostability of reBaxA50.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号