首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Temporally variable and reciprocal subsidies between ecosystems are ubiquitous. These spatial flows can generate a suite of direct and indirect effects in local and meta-ecosystems. The focus of most subsidy research, however, has been on the response of consumers in recipient ecosystems to constant subsidies over very short or very long time scales. We derive a meta-ecosystem model to explicitly consider the dynamic feedbacks between local ecosystems coupled through reciprocal pulsed subsidies. We predict oscillating reinforcing and dampening effects of reciprocal pulsed herbivore flows. Maximum reinforcing effects between reciprocal pulsed herbivore flows occur when these flows are in phase with the dynamics of neighboring predators. This prediction is robust to a range of pulse quantities and frequencies. Reciprocal pulsed herbivore subsidies lead to spatial and temporal variability in the strength of trophic cascades in local and meta-ecosystems but these cascading effects are the strongest when reciprocal pulsed subsidies are temporally concentrated. When predators demonstrate a behavioral response to prey abundance, reciprocal pulsed subsidies dampen the strength of local trophic cascades but lead to strong trophic cascades across local ecosystems. The timing of reciprocal pulsed subsidies is a critical component that determines the cascading effects of spatial flows. We show that spatial and temporal variabilities in resources and consumers can have a significant influence on the strength of cascading trophic interactions; therefore, our ability to detect and understand trophic cascades may depend on the scale of inquiry of ecological studies.  相似文献   

2.
The transport of resource subsidies by animals has been documented across a range of species and ecosystems. Although many of these studies have shown that animal resource subsidies can have significant effects on nutrient cycling, ecosystem productivity, and food‐web structure, there is a great deal of variability in the occurrence and strength of these effects. Here we propose a conceptual framework for understanding the context dependency of animal resource subsidies, and for developing and testing predictions about the effects of animal subsidies over space and time. We propose a general framework, in which abiotic characteristics and animal vector characteristics from the donor ecosystem interact to determine the quantity, quality, timing, and duration (QQTD) of an animal input. The animal input is translated through the lens of recipient ecosystem characteristics, which include both abiotic and consumer characteristics, to yield the QQTD of the subsidy. The translated subsidy influences recipient ecosystem dynamics through effects on both trophic structure and ecosystem function, which may both influence the recipient ecosystem's response to further inputs and feed back to influence the donor ecosystem. We present a review of research on animal resource subsidies across ecosystem boundaries, placed within the context of this framework, and we discuss how the QQTD of resource subsidies can influence trophic structure and ecosystem function in recipient ecosystems. We explore the importance of understanding context dependency of animal resource subsidies in increasingly altered ecosystems, in which the characteristics of both animal vectors and donor and recipient ecosystems may be changing rapidly. Finally, we make recommendations for future research on animal resource subsidies, and resource subsidies in general, that will increase our understanding and predictive capacity about their ecosystem effects.  相似文献   

3.
Recent meta‐analyses confirm that the strength of trophic cascades (indirect positive effects of predators on plant biomass through control of herbivores) varies among ecosystem types. In particular, most terrestrial systems show smaller cascades than most aquatic ones. Ecologists still remain challenged to explain this variation. Here, we examine a food quality hypothesis which states that higher quality plants should promote stronger trophic cascades. Food quality involves two components: digestion resistance of plants and magnitude of stoichiometric imbalance between plants and herbivores (where stoichiometry involves ratios of nutrient:carbon ratio of tissues). Both factors vary among ecosystems and could mediate conversion efficiency of plants into new herbivores (and hence control of plants by herbivores). We explored the food quality hypothesis using two models, one assuming that plant stoichiometry is a fixed trait, the other one allowing this trait to vary dynamically (but with a minimal nutrient:carbon ratio of structural mass). Both models produce the same suite of results. First, as expected, systems with more easily digested plants promote stronger cascades. Second, contrary to expectations, higher (fixed or minimal) nutrient:carbon ratio of plants do not promote stronger cascades, largely because of the net result of ecosystem feedbacks. Still, the model with dynamic stoichiometry permits positive correlations of realized plant nutrient:carbon ratio and cascade strength (as predicted), mediated through digestion resistance. Third, lower nutrient:carbon ratio of herbivores promotes stronger cascades. However, this result likely cannot explain variation in cascade strength because nutrient:carbon stoichiometry of herbivores does not vary greatly between terrestrial and aquatic ecosystems. Finally, we found that predation promotes nutrient limitation of herbivores. This finding highlights that food web processes, such as predation, can influence stoichiometry‐mediated interactions of plants and herbivores.  相似文献   

4.
Conceptual models of lake ecosystem structure and function have generally assumed that energy in pelagic systems is derived from in situ photosynthesis and that its use by higher trophic levels depends on the average properties of individuals in consumer populations. These views are challenged by evidence that allochthonous subsidies of organic carbon greatly influence energy mobilization and transfer and the trophic structure of pelagic food webs, and that size variation within consumer species has major ramifications for lake community dynamics and structure. These discoveries represent conceptual shifts that have yet to be integrated into current views on lake ecosystems. Here, we assess key aspects of energy mobilization and size-structured community dynamics, and show how these processes are intertwined in pelagic food webs.  相似文献   

5.
We evaluated the potential contribution of allochthonous biomass subsidies to the upper trophic levels of offshore food webs in the northeastern Gulf of Mexico (GOM). We made this evaluation considering nitrogen, an essential and often limiting nutrient in coastal ecosystems, to estimate the potential production of within-ecosystem biomass relative to the known import of biomass from an adjacent seagrass-dominated ecosystem. When adjusted for trophic transfer efficiency, we found the biomass subsidy from a single species (pinfish, Lagodon rhomboides) from nearshore seagrass habitat to the offshore GOM to be greater than the amount of nitrogen exported by two major rivers and local submarine ground water discharge. Our calculations show that seagrass-derived biomass accounts for approximately 25% of the total potential production in the northeastern GOM. This estimate is in agreement with a previous study that found 18.5–25% of the biomass in a predatory reef fish was derived from seagrass biomass inputs. These results indicate that all of the sources we consider account for the majority of the nitrogen available to the food web in the northeastern GOM. Our approach could be adapted to other coupled ecosystems to determine the relative importance of biomass subsidies to coastal ocean food webs.  相似文献   

6.
Resource subsidies increase the productivity of recipient food webs and can affect ecosystem dynamics. Subsidies of prey often support elevated predator biomass which may intensify top-down control and reduce the flow of reciprocal subsidies into adjacent ecosystems. However, top-down control in subsidized food webs may be limited if primary consumers posses morphological or behavioral traits that limit vulnerability to predation. In forested streams, terrestrial prey support high predator biomass creating the potential for strong top-down control, however armored primary consumers often dominate the invertebrate assemblage. Using empirically based simulation models, we tested the response of stream food webs to variations in subsidy magnitude, prey vulnerability, and the presence of two top predators. While terrestrial prey inputs increased predator biomass (+12%), the presence of armored primary consumers inhibited top-down control, and diverted most aquatic energy (∼75%) into the riparian forest through aquatic insect emergence. Food webs without armored invertebrates experienced strong trophic cascades, resulting in higher algal (∼50%) and detrital (∼1600%) biomass, and reduced insect emergence (−90%). These results suggest prey vulnerability can mediate food web responses to subsidies, and that top-down control can be arrested even when predator-invulnerable consumers are uncommon (20%) regardless of the level of subsidy.  相似文献   

7.
跨越不同生态系统之间的物质、能量和营养元素流动,即资源补贴,是生态系统的基本属性,也是生态学研究的基本问题之一.常见的资源补贴包括落入水体的树叶凋落物和陆地昆虫、水生昆虫成虫、从海洋生殖洄游的鲑鱼等,这些外源性的资源补贴对接收生态系统的生物个体、种群、群落、生物多样性和生态系统功能都有影响,包括促进个体生长、增加物种丰度和多样性、改变群落结构、增加生态系统的生产力、改变食物链长度及影响食物网、影响生态系统的稳定性等.随着未来人类活动对环境扰动的增加,尤其在土地利用、气候变化、生物入侵方面,对跨越生态系统资源补贴的时空动态影响将加剧,因而生态系统将面临更加严峻的威胁.鉴于此,未来在该领域的基础研究应着重开展以下几方面研究:单一和多重环境胁迫对资源补贴和生态系统的影响;动态资源补贴在生态系统修复及管理中的应用;关注与污染物相关的资源补贴的负面影响;加强跨越生境资源补贴在热带和亚热带以及在我国的生态学基础研究.  相似文献   

8.
While it is well established that ecosystem subsidies-the addition of energy, nutrients, or materials across ecosystem boundaries-can affect consumer abundance, there is less information available on how subsidy levels may affect consumer diet, body condition, trophic position, and resource partitioning among consumer species. There is also little information on whether changes in vegetation structure commonly associated with spatial variation in subsidies may play an important role in driving consumer responses to subsidies. To address these knowledge gaps, we studied changes in abundance, diet, trophic position, size, and body condition of two congeneric gecko species (Lepidodactylus spp.) that coexist in palm dominated and native (hereafter dicot dominated) forests across the Central Pacific. These forests differ strongly both in the amount of marine subsidies that they receive from seabird guano and carcasses, and in the physical structure of the habitat. Contrary to other studies, we found that subsidy level had no impact on the abundance of either gecko species; it also did not have any apparent effects on resource partitioning between species. However, it did affect body size, dietary composition, and trophic position of both species. Geckos in subsidized, dicot forests were larger, had higher body condition and more diverse diets, and occupied a much higher trophic position than geckos found in palm dominated, low subsidy level forests. Both direct variation in subsidy levels and associated changes in habitat structure appear to play a role in driving these responses. These results suggest that variation in subsidy levels may drive important behavioral responses in predators, even when their numerical response is limited. Strong changes in trophic position of consumers also suggest that subsidies may drive increasingly complex food webs, with longer overall food chain length.  相似文献   

9.
Energy and nutrient flow between habitats, or allochthonous input, can have a significant impact on food web dynamics. Previous theory demonstrated that resource abundance decreases in habitats where consumers are subsidized. Here we examine the effect of subsidies that are available in localized parts of a habitat (such as near the shore in a marine‐subsidized terrestrial ecosystem) with a two‐patch model in which consumers move between patches, resources are stationary, and consumers receive the subsidy in only one of the two patches. In contrast to previous theory, our results show that subsidized consumers can increase resource abundance, though only in the subsidized patch. Furthermore, the total resource population responds positively to increasing consumer movement. These results demonstrate the importance of spatial heterogeneity in food web dynamics and the need for further examination of the role of space in multispecies trophic webs.  相似文献   

10.
11.
12.
Most ecosystems are recipients of allochthonous materials that enhance in situ productivity. Recent theoretical and empirical studies suggest that low to moderate inputs can stabilize food webs. However, depending on the trophic levels that use the resource, food webs can become unstable as inputs increase. Where large amounts of agricultural resources are transferred to natural habitats, trophic dynamics change: trophic cascades can occur and rare or uncommon species can become invasive. Rates of change in species abundances can also be amplified by the effects of changes in legislation and management practices on subsidized consumers.  相似文献   

13.
Spatial flows of materials and organisms across ecosystem boundaries are ubiquitous. Understanding the consequences of these flows should be a basic goal of ecosystem science, and yet it has received scant theoretical treatment to date. Here, using a simple, open, nutrient-limited ecosystem model with trophic interactions, we explore theoretically how spatial flows affect the functioning of local ecosystems, how physical mass-balance constraints interact with biological demographic constraints in the regulation of this functioning, and how failure to consider these constraints explicitly can lead to models that are ecologically inconsistent. In particular, we show that standard prey-dependent models for trophic interactions may lead to implausible outcomes when embedded in an ecosystem context with appropriate mass flows and mass-balance constraints. Our analysis emphasizes the need for integration of population, community, and ecosystem perspectives in ecology and the critical consequences of assuming closed versus open systems.  相似文献   

14.
Spatial subsidies are associated with pronounced ecosystem responses, as nutrients cross ecological boundaries and cascade through food webs. While the importance of subsidies is known, the role of shellfish, specifically molluscs, as a marine subsidy has not been formally described. Focusing primarily on the Pacific coast of North America, we identify vectors that transport shellfish-derived nutrients into coastal terrestrial environments, including birds, mammals, and over 13 000 yr of marine resource use by people. Evidence from recipient ecosystems suggests shellfish drastically influence soil chemistry, forest productivity and the diversity of primary producers at the regional and landscape level. Responses in higher trophic levels have not yet been investigated, but given documented responses in lower trophic levels, this may be due to a lack of examination. To determine if the processes we describe within the northeast Pacific are pertinent to coastal environments worldwide, we also explore shellfish subsidies globally, with a specific focus on temperate and tropical islands. As shellfish are not as spatially or temporally constrained as other subsidies, our examination suggests our findings are applicable to many other geographical regions along the marine–terrestrial interface.  相似文献   

15.
Streams and adjacent terrestrial ecosystems are characterized by permeable boundaries that are crossed by resource subsidies. Although the importance of these subsidies for riverine ecosystems is increasingly recognized, little is known about how they may be influenced by global environmental change. Drawing from available evidence, in this review we propose a conceptual framework to evaluate the effects of global change on the quality and spatiotemporal dynamics of stream–terrestrial subsidies. We illustrate how changes to hydrological and temperature regimes, atmospheric CO2 concentration, land use and the distribution of nonindigenous species can influence subsidy fluxes by affecting the biology and ecology of donor and recipient systems and the physical characteristics of stream–riparian boundaries. Climate‐driven changes in the physiology and phenology of organisms with complex life cycles will influence their development time, body size and emergence patterns, with consequences for adjacent terrestrial consumers. Also, novel species interactions can modify subsidy dynamics via complex bottom‐up and top‐down effects. Given the seasonality and pulsed nature of subsidies, alterations of the temporal and spatial synchrony of resource availability to consumers across ecosystems are likely to result in ecological mismatches that can scale up from individual responses, to communities, to ecosystems. Similarly, altered hydrology, temperature, CO2 concentration and land use will modify the recruitment and quality of riparian vegetation, the timing of leaf abscission and the establishment of invasive riparian species. Along with morphological changes to stream–terrestrial boundaries, these will alter the use and fluxes of allochthonous subsidies associated with stream ecosystems. Future research should aim to understand how subsidy dynamics will be affected by key drivers of global change, including agricultural intensification, increasing water use and biotic homogenization. Our conceptual framework based on the match–mismatch between donor and recipient organisms may facilitate understanding of the multiple effects of global change and aid in the development of future research questions.  相似文献   

16.
Material and energy flows among ecosystems can directly and indirectly drive ecosystem functions. Yet, how populations of consumers respond to allochthonous inputs at a macroecological scale is still unclear. Using a meta‐analysis spanning several biomes, we show that the abundance of recipient populations is 36–57% larger with increased allochthonous inputs. The strength of direct effects on the recipients of these inputs as well as the indirect effects on the consumers of these recipients (i.e. ascending indirect effects) are constant across a latitudinal gradient spanning subtropical, arid, temperate, boreal and arctic ecosystems. However, indirect effect on the in situ resources of the input recipient (i.e. descending indirect effects) decreases with latitude. Our results suggest that the influence of allochthonous inputs can vary across large‐scale gradients of ecosystem productivity and may be driven by the types of trophic interactions within recipient food webs.  相似文献   

17.
The role of resource subsidies across ecosystem boundaries has emerged as an important concept in contemporary ecology. For lake ecosystems, this has led to interest in quantifying the contribution of terrestrial allochthonous carbon to aquatic secondary production. An inverse relationship between habitat area and the role of allochthonous subsidies has been documented on marine islands and assumed for lakes, yet there have been no tests of this pattern among benthic (lake bottom) consumers. Here, we used carbon stable isotopes to trace terrestrial allochthonous and benthic autochthonous carbon use by the crayfish Pacifastacus leniusculus over a gradient of lake area, productivity and urbanization. Consistent with findings from terrestrial islands, habitat size dictated the importance of allochthonous subsidies, as P. leniusculus transitioned from using predominantly terrestrial carbon in small lakes to an increased reliance on autochthonous production in larger lakes. However, shoreline urbanization interacted with this pattern, particularly for small lakes where greater urbanization resulted in reduced use of allochthonous resources. As such, we provide, to our knowledge, the first confirmation of the predicted relationship between habitat size and importance of allochthonous subsidies to lake benthic consumers, but found that urbanization can interfere with this pattern.  相似文献   

18.
The productivity gradient between adjacent habitats can fluctuate over time due to seasonal cycles and lead to both habitats being alternately subsidized. Although this process is well known for prey subsidies in stream-riparian forest ecotones, few studies are available for other systems or subsidy types. Moreover, the effects of transport intensity on this expected alternate subsidy exchange are still poorly understood. We assessed whether subsidy input and allochthonous carbon assimilation by resident benthic invertebrates alternated between adjacent mangroves and salt marshes during peaks of detritus productivity (summer and winter, respectively) in a subtropical estuary, by using detritus trapping techniques and stable isotope ratios. Sampling was performed simultaneously in the sheltered (inner sector) and exposed (outer sector) regions of the estuary to assess the influence of different physical conditions on the intensity of subsidy flow. Transport of mangrove litter into the salt marsh occurred mainly in the summer in both sectors; however, most of the litter remained trapped in the marsh boundary. The mixing model also showed that there was little influence of allochthonous carbon in the diet of salt marsh benthic invertebrates. Marsh litter supply to mangroves did not vary significantly between seasons but was significantly higher in the outer than in the inner sector. Likewise, the mixing model showed great contribution of salt marsh carbon to the diet of benthic invertebrates from the outer-sector mangroves, whereas autochthonous carbon predominated in those from the inner mangroves. Our findings reinforce the model that trophic connectivity relies on the relative proportion of allochthonous (subsidy) and autochthonous resources rather than only on asymmetric productivity between habitats. Differences in the proportion of resources result from interaction among productivity, permeability, and transport vectors that lead to many states of trophic connectivity.  相似文献   

19.
‘Wasp-waist’ control of marine ecosystems is driven by a combination of top-down and bottom-up forcing by a few abundant short-lived species occupying intermediate trophic levels that form a narrow ‘waist’ through which energy flow from low to high trophic levels is controlled. It has been assumed that wasp-waist control occurs primarily in highly productive and species-poor systems (e.g. upwelling regions). Two large, species-rich, pelagic ecosystems in the relatively oligotrophic eastern and western Pacific Ocean also show wasp-waist-like structure, in that short-lived and fast-growing cephalopods and fishes at intermediate trophic levels comprise the vast majority of the biomass. Possible forcing dynamics of these systems were examined using ecosystem models by altering the biomass of phytoplankton (bottom-up forcing), large pelagic predators (top-down forcing), and intermediate ‘wasp-waist’ functional groups independently and observing how these changes propagated throughout the ecosystem. The largest effects were seen when altering the biomass of mid trophic-level epipelagic and mesopelagic fishes, where dramatic trophic cascades occurred both upward and downward in the system. We conclude that the high productivity and standing biomass of animals at intermediate trophic levels has a strong top-down influence on the abundance of primary producers. Furthermore, their importance as prey for large predators results in bottom-up controls on populations at higher trophic levels. We show that these tropical pelagic ecosystems possess a complex structure whereby several waist groups and alternate trophic pathways from primary producers to apex predators can cause unpredictable effects when the biomasses of particular functional groups are altered. Such models highlight the possible structuring mechanisms in pelagic systems, which have implications for fisheries that exploit these wasp-waist groups, such as squid fisheries, as well as for fisheries of top predators such as tunas and billfishes that prey upon wasp-waist species.  相似文献   

20.
During past decades, several mechanisms such as resource quality and habitat complexity have been proposed to explain variations in the strength of trophic cascades across ecosystems. In detritus-based headwater streams, litter accumulations constitute both a habitat and a resource for detritivorous macroinvertebrates. Because litter edibility (which promotes trophic cascades) is usually inversely correlated with its structural complexity (which weakens trophic cascades), there is a great scope for stronger trophic cascades in litter accumulations that are dominated by easily degradable litter species. However, it remains unclear how mixing contrasting litter species (conferring both habitat complexity and high quality resource) may influence top–down controls on communities and processes. In enclosures exposed in a second-order stream, we manipulated litter species composition by using two contrasting litter (alder and oak), and the presence–absence of a macroinvertebrate predator (Cordulegaster boltonii larvae), enabling it to effectively exert predation pressure, or not, on detritivores (consumptive versus non-consumptive predation effects). Leaf mass loss, detritivore biomass and community structure were mostly controlled independently by litter identity and mixing and by predator consumption. However, the strength of predator control was mediated by litter quality (stronger on alder), and to a lesser extent by litter mixing (weaker on mixed litter). Refractory litter such as oak leaves may contribute to the structural complexity of the habitat for stream macroinvertebrates, allowing the maintenance of detritivore communities even when strong predation pressure occurs. We suggest that considering the interaction between top–down and bottom–up factors is important when investigating their influence on natural communities and ecosystem processes in detritus-based ecosystems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号