首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Complex wasp-waist regulation of pelagic ecosystems in the Pacific Ocean
Authors:Shane P Griffiths  Robert J Olson  George M Watters
Institution:1. CSIRO Division of Marine and Atmospheric Research, GPO, Box 2583, Brisbane, QLD, 4001, Australia
2. Inter-American Tropical Tuna Commission, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
3. Antarctic Ecosystem Research Division, Southwest Fisheries Science Center National Marine Fisheries Service, 8901 La Jolla Shores Drive, La Jolla, CA, 92037, USA
Abstract:‘Wasp-waist’ control of marine ecosystems is driven by a combination of top-down and bottom-up forcing by a few abundant short-lived species occupying intermediate trophic levels that form a narrow ‘waist’ through which energy flow from low to high trophic levels is controlled. It has been assumed that wasp-waist control occurs primarily in highly productive and species-poor systems (e.g. upwelling regions). Two large, species-rich, pelagic ecosystems in the relatively oligotrophic eastern and western Pacific Ocean also show wasp-waist-like structure, in that short-lived and fast-growing cephalopods and fishes at intermediate trophic levels comprise the vast majority of the biomass. Possible forcing dynamics of these systems were examined using ecosystem models by altering the biomass of phytoplankton (bottom-up forcing), large pelagic predators (top-down forcing), and intermediate ‘wasp-waist’ functional groups independently and observing how these changes propagated throughout the ecosystem. The largest effects were seen when altering the biomass of mid trophic-level epipelagic and mesopelagic fishes, where dramatic trophic cascades occurred both upward and downward in the system. We conclude that the high productivity and standing biomass of animals at intermediate trophic levels has a strong top-down influence on the abundance of primary producers. Furthermore, their importance as prey for large predators results in bottom-up controls on populations at higher trophic levels. We show that these tropical pelagic ecosystems possess a complex structure whereby several waist groups and alternate trophic pathways from primary producers to apex predators can cause unpredictable effects when the biomasses of particular functional groups are altered. Such models highlight the possible structuring mechanisms in pelagic systems, which have implications for fisheries that exploit these wasp-waist groups, such as squid fisheries, as well as for fisheries of top predators such as tunas and billfishes that prey upon wasp-waist species.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号