首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 370 毫秒
1.
2.
3.
A critical step in the activation of NF-kappa B is the phosphorylation of I kappa Bs by the I kappa B kinase (IKK) complex. IKK alpha and IKK beta are the two catalytic subunits of the IKK complex and two additional molecules, IKK gamma/NEMO and IKAP, have been described as further integral members. We have analyzed the function of both proteins for IKK complex composition and NF-kappa B signaling. IKAP and IKK gamma belong to distinct cellular complexes. Quantitative association of IKK gamma was observed with IKK alpha and IKK beta. In contrast IKAP was complexed with several distinct polypeptides. Overexpression of either IKK gamma or IKAP blocked tumor necrosis factor alpha induction of an NF-kappa B-dependent reporter construct, but IKAP in addition affected several NF-kappa B-independent promoters. Whereas specific down-regulation of IKK gamma protein levels by antisense oligonucleotides significantly reduced cytokine-mediated activation of the IKK complex and subsequent NF-kappa B activation, a similar reduction of IKAP protein levels had no effect on NF-kappa B signaling. Using solely IKK alpha, IKK beta, and IKK gamma, we could reconstitute a complex whose apparent molecular weight is comparable to that of the endogenous IKK complex. We conclude that while IKK gamma is a stoichiometric component of the IKK complex, obligatory for NF-kappa B signaling, IKAP is not associated with IKKs and plays no specific role in cytokine-induced NF-kappa B activation.  相似文献   

4.
5.
NF-kappa B activity is regulated by its association with the inhibitory I kappa B proteins, among which I kappa B alpha and I kappa B beta are the most abundant. I kappa B proteins are widely expressed in different cells and tissues and bind to similar combinations of NF-kappa B proteins. The degradation of I kappa B proteins allows nuclear translocation of NF-kappa B and hence plays a critical role in NF-kappa B activation. Previous studies have demonstrated that, although both I kappa B proteins are phosphorylated by the same I kappa B kinase (IKK) complex, and their ubiquitination and degradation following phosphorylation are carried out by the same ubiquitination/degradation machinery, their kinetics of degradation are quite different. To better understand the underlying mechanism of the differences in degradation kinetics, we have carried out a systematic, comparative analysis of the ability of the IKK catalytic subunits to phosphorylate I kappa B alpha and I kappa B beta. We found that, whereas IKK alpha is a weak kinase for the N-terminal serines of both I kappa B isoforms, IKK beta is an efficient kinase for those residues in I kappa B alpha. However, IKK beta phosphorylates the N-terminal serines of I kappa B beta far less efficiently, thereby providing an explanation for the slower rate of degradation observed for I kappa B beta. Mutational analysis indicated that the regions around the two N-terminal serines collectively influence the relative phosphorylation efficiency, and no individual residue is critical. These findings provide the first systematic analysis of the ability of I kappa B alpha and I kappa B beta to serve as substrates for IKKs and help provide a possible explanation for the differential degradation kinetics of I kappa B alpha and I kappa B beta.  相似文献   

6.
The cyclooxygenase 2 (COX-2) inhibitor celecoxib (also called celebrex), approved for the treatment of colon carcinogenesis, rheumatoid arthritis, and other inflammatory diseases, has been shown to induce apoptosis and inhibit angiogenesis. Because NF-kappa B plays a major role in regulation of apoptosis, angiogenesis, carcinogenesis, and inflammation, we postulated that celecoxib modulates NF-kappa B. In the present study, we investigated the effect of this drug on the activation of NF-kappa B by a wide variety of agents. We found that celecoxib suppressed NF-kappa B activation induced by various carcinogens, including TNF, phorbol ester, okadaic acid, LPS, and IL-1 beta. Celecoxib inhibited TNF-induced I kappa B alpha kinase activation, leading to suppression of I kappa B alpha phosphorylation and degradation. Celecoxib suppressed both inducible and constitutive NF-kappa B without cell type specificity. Celecoxib also suppressed p65 phosphorylation and nuclear translocation. Akt activation, which is required for TNF-induced NF-kappa B activation, was also suppressed by this drug. Celecoxib also inhibited the TNF-induced interaction of Akt with I kappa B alpha kinase (IKK). Celecoxib abrogated the NF-kappa B-dependent reporter gene expression activated by TNF, TNF receptor, TNF receptor-associated death domain, TNF receptor-associated factor 2, NF-kappa B-inducing kinase, and IKK, but not that activated by p65. The COX-2 promoter, which is regulated by NF-kappa B, was also inhibited by celecoxib, and this inhibition correlated with suppression of TNF-induced COX-2 expression. Besides NF-kappa B, celecoxib also suppressed TNF-induced JNK, p38 MAPK, and ERK activation. Thus, overall, our results indicate that celecoxib inhibits NF-kappa B activation through inhibition of IKK and Akt activation, leading to down-regulation of synthesis of COX-2 and other genes needed for inflammation, proliferation, and carcinogenesis.  相似文献   

7.
8.
Overexpression of multidrug resistance genes and their encoded P-glycoproteins is a major mechanism for the development of multidrug resistance in cancer cells. The hepatocarcinogen 2-acetylaminofluorene (2-AAF) efficiently activates rat mdr1b expression. However, the underlying mechanisms are largely unknown. In this study, we demonstrated that a NF-kappa B site on the mdr1b promoter was required for this induction. Overexpression of antisense p65 and I kappa B alpha partially abolished the induction. We then delineated the pathway through which 2-AAF activates NF-kappa B. 2-AAF treatment led to the increase of intracellular reactive oxygen species (ROS) which causes activation of IKK kinases, degradation of I kappa B beta (but not I kappa B alpha), and increase in NF-kappa B DNA binding activity. Consistent with the idea that ROS may participate in mdr1b regulation, antioxidant N-acetylcysteine inhibited the induction of mdr1b by 2-AAF. Overproduction of a physiological antioxidant glutathione (GSH) blocked the activation of IKK kinase complex and NF-kappa B DNA binding. Based on these results, we conclude that 2-AAF up-regulates mdr1b through the generation of ROS, activation of IKK kinase, degradation of I kappa B beta, and subsequent activation of NF-kappa B. This is the first report that reveals the specific cis-elements and signaling pathway responsible for the induction of mdr1b by the chemical carcinogen 2-AAF.  相似文献   

9.
Constitutive activation of NF-kappa B is an emerging hallmark of various types of tumors including breast, colon, pancreatic, ovarian, and melanoma. In melanoma cells, the basal expression of the CXC chemokine, CXCL1, is constitutively up-regulated. This up-regulation can be attributed in part to constitutive activation of NF-kappa B. Previous studies have shown an elevated basal I kappa B kinase (IKK) activity in Hs294T melanoma cells, which leads to an increased rate of I kappa B phosphorylation and degradation. This increase in I kappa B-alpha phosphorylation and degradation leads to an approximately 19-fold higher nuclear localization of NF-kappa B. However, the upstream IKK kinase activity is up-regulated by only about 2-fold and cannot account for the observed increase in NF-kappa B activity. We now demonstrate that NF-kappa B-inducing kinase (NIK) is highly expressed in melanoma cells, and IKK-associated NIK activity is enhanced in these cells compared with the normal cells. Kinase-dead NIK blocked constitutive NF-kappa B or CXCL1 promoter activity in Hs294T melanoma cells, but not in control normal human epidermal melanocytes. Transient overexpression of wild type NIK results in increased phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which is inhibited in a concentration-dependent manner by PD98059, an inhibitor of p42/44 MAPK. Moreover, the NF-kappa B promoter activity decreased with overexpression of dominant negative ERK expression constructs, and EMSA analyses further support the hypothesis that ERK acts upstream of NF-kappa B and regulates the NF-kappa B DNA binding activity. Taken together, our data implicate involvement of I kappa B kinase and MAPK signaling cascades in NIK-induced constitutive activation of NF-kappa B.  相似文献   

10.
Phosphatidylinositol (PI) 3-kinase/Akt signaling activates NF-kappa B through pleiotropic, cell type-specific mechanisms. This study investigated the significance of PI 3-kinase/Akt signaling to tumor necrosis factor (TNF)-induced NF-kappa B activation in transformed, immortalized, and primary cells. Pharmacological inhibition of PI 3-kinase blocked TNF-induced NF-kappa B DNA binding in the 293 line of embryonic kidney cells, partially affected binding in MCF-7 breast cancer cells, HeLa and ME-180 cervical carcinoma cells, and NIH 3T3 cells but was without significant effect in H1299 and human umbilical vein endothelial cells, cell types in which TNF activated Akt. NF-kappa B is retained in the cytoplasm by inhibitory proteins, I kappa Bs, which are phosphorylated and targeted for degradation by I kappa B kinases (IKK alpha and IKK beta). Expression and the ratios of IKK alpha and IKK beta, which homo- and heterodimerize, varied among cell types. Cells with a high proportion of IKK alpha (the IKK kinase activated by Akt) to IKK beta were most sensitive to PI 3-kinase inhibitors. Consequently, transient expression of IKK beta diminished the capacity of the inhibitors to block NF-kappa B DNA binding in 293 cells. Also, inhibitors of PI 3-kinase blocked NF-kappa B DNA binding in Ikk beta-/- but not Ikk alpha-/- or wild-type cells in which the ratio of IKK alpha to IKK beta is low. Thus, noncoordinate expression of I kappa B kinases plays a role in determining the cell type-specific role of Akt in NF-kappa B activation.  相似文献   

11.
Canonical activation of NF-kappa B is mediated via phosphorylation of the inhibitory I kappa B proteins by the I kappa B kinase complex (IKK). IKK is composed of a heterodimer of the catalytic IKK alpha and IKK beta subunits and a presumed regulatory protein termed NEMO (NF-kappa B essential modulator) or IKK gamma. NEMO/IKK gamma is indispensable for activation of the IKKs in response to many signals, but its mechanism of action remains unclear. Here we identify TANK (TRAF family member-associated NF-kappa B activator) as a NEMO/IKK gamma-interacting protein via yeast two-hybrid analyses. This interaction is confirmed in mammalian cells, and the domains required are mapped. TANK was previously shown to assist NF-kappa B activation in a complex with TANK-binding kinase 1 (TBK1) or IKK epsilon, two kinases distantly related to IKK alpha/beta, but the underlying mechanisms remained unknown. Here we show that TBK1 and IKK epsilon synergize with TANK to promote interaction with the IKKs. The TANK binding domain within NEMO/IKK gamma is required for proper functioning of this IKK subunit. These results indicate that TANK can synergize with IKK epsilon or TBK1 to link them to IKK complexes, where the two kinases may modulate aspects of NF-kappa B activation.  相似文献   

12.
13.
Previous studies indicated that activation of PKC and Src tyrosine kinases by ischemic preconditioning (PC) may participate in the activation of NF-kappa B. However, the molecular mechanisms underlying activation of NF-kappa B during ischemic PC remain unknown. In the hearts of conscious rabbits, it was found that ischemic PC (6 cycles of 4-min coronary occlusion and 4-min reperfusion) significantly induced both tyrosine (+226.9 +/- 42%) and serine (+137.0 +/- 36%) phosphorylation of the NF-kappa B inhibitory protein I kappa B-alpha, concomitant with increased activation of the I kappa B-alpha kinases IKK alpha (+255.0 +/- 46%) and IKK beta (+173.1 +/- 35%). Furthermore, both tyrosine and serine phosphorylation of I kappa B-alpha were blocked by pretreatment with either the nonreceptor tyrosine kinase inhibitor lavendustin-A (LD-A) or the PKC inhibitor chelerythrine (Che) (both given at doses previously shown to block ischemic PC). Interestingly, Che completely abolished PC-induced activation of IKK alpha/beta, whereas LD-A had no effect. In addition, I kappa B-alpha protein level did not change during ischemic PC. Together, these data indicate that ischemic PC-induced activation of NF-kappa B occurs through both tyrosine and serine phosphorylation of I kappa B-alpha and is regulated by nonreceptor tyrosine kinases and PKC.  相似文献   

14.
15.
16.
17.
18.
Astaxanthin, a carotenoid without vitamin A activity, has shown anti-oxidant and anti-inflammatory activities; however, its molecular action and mechanism have not been elucidated. We examined in vitro and in vivo regulatory function of astaxanthin on production of nitric oxide (NO) and prostaglandin E2 (PGE2) as well as expression of inducible NO synthase (iNOS), cyclooxygenase-2, tumor necrosis factor-alpha (TNF-alpha), and interleukin-1beta (IL-1beta). Astaxanthin inhibited the expression or formation production of these proinflammatory mediators and cytokines in both lipopolysaccharide (LPS)-stimulated RAW264.7 cells and primary macrophages. Astaxanthin also suppressed the serum levels of NO, PGE2, TNF-alpha, and IL-1beta in LPS-administrated mice, and inhibited NF-kappaB activation as well as iNOS promoter activity in RAW264.7 cells stimulated with LPS. This compound directly inhibited the intracellular accumulation of reactive oxygen species in LPS-stimulated RAW264.7 cells as well as H2O2-induced NF-kappaB activation and iNOS expression. Moreover, astaxanthin blocked nuclear translocation of NF-kappaB p65 subunit and I(kappa)B(alpha) degradation, which correlated with its inhibitory effect on I(kappa)B kinase (IKK) activity. These results suggest that astaxanthin, probably due to its antioxidant activity, inhibits the production of inflammatory mediators by blocking NF-kappaB activation and as a consequent suppression of IKK activity and I(kappa)B-alpha degradation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号