首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The cyclooxygenase 2 (COX-2) inhibitor celecoxib (also called celebrex), approved for the treatment of colon carcinogenesis, rheumatoid arthritis, and other inflammatory diseases, has been shown to induce apoptosis and inhibit angiogenesis. Because NF-kappa B plays a major role in regulation of apoptosis, angiogenesis, carcinogenesis, and inflammation, we postulated that celecoxib modulates NF-kappa B. In the present study, we investigated the effect of this drug on the activation of NF-kappa B by a wide variety of agents. We found that celecoxib suppressed NF-kappa B activation induced by various carcinogens, including TNF, phorbol ester, okadaic acid, LPS, and IL-1 beta. Celecoxib inhibited TNF-induced I kappa B alpha kinase activation, leading to suppression of I kappa B alpha phosphorylation and degradation. Celecoxib suppressed both inducible and constitutive NF-kappa B without cell type specificity. Celecoxib also suppressed p65 phosphorylation and nuclear translocation. Akt activation, which is required for TNF-induced NF-kappa B activation, was also suppressed by this drug. Celecoxib also inhibited the TNF-induced interaction of Akt with I kappa B alpha kinase (IKK). Celecoxib abrogated the NF-kappa B-dependent reporter gene expression activated by TNF, TNF receptor, TNF receptor-associated death domain, TNF receptor-associated factor 2, NF-kappa B-inducing kinase, and IKK, but not that activated by p65. The COX-2 promoter, which is regulated by NF-kappa B, was also inhibited by celecoxib, and this inhibition correlated with suppression of TNF-induced COX-2 expression. Besides NF-kappa B, celecoxib also suppressed TNF-induced JNK, p38 MAPK, and ERK activation. Thus, overall, our results indicate that celecoxib inhibits NF-kappa B activation through inhibition of IKK and Akt activation, leading to down-regulation of synthesis of COX-2 and other genes needed for inflammation, proliferation, and carcinogenesis.  相似文献   

2.
3.
4.
5.
6.
7.
Constitutive activation of NF-kappa B is an emerging hallmark of various types of tumors including breast, colon, pancreatic, ovarian, and melanoma. In melanoma cells, the basal expression of the CXC chemokine, CXCL1, is constitutively up-regulated. This up-regulation can be attributed in part to constitutive activation of NF-kappa B. Previous studies have shown an elevated basal I kappa B kinase (IKK) activity in Hs294T melanoma cells, which leads to an increased rate of I kappa B phosphorylation and degradation. This increase in I kappa B-alpha phosphorylation and degradation leads to an approximately 19-fold higher nuclear localization of NF-kappa B. However, the upstream IKK kinase activity is up-regulated by only about 2-fold and cannot account for the observed increase in NF-kappa B activity. We now demonstrate that NF-kappa B-inducing kinase (NIK) is highly expressed in melanoma cells, and IKK-associated NIK activity is enhanced in these cells compared with the normal cells. Kinase-dead NIK blocked constitutive NF-kappa B or CXCL1 promoter activity in Hs294T melanoma cells, but not in control normal human epidermal melanocytes. Transient overexpression of wild type NIK results in increased phosphorylation of extracellular signal-regulated kinases 1 and 2 (ERK1/2), which is inhibited in a concentration-dependent manner by PD98059, an inhibitor of p42/44 MAPK. Moreover, the NF-kappa B promoter activity decreased with overexpression of dominant negative ERK expression constructs, and EMSA analyses further support the hypothesis that ERK acts upstream of NF-kappa B and regulates the NF-kappa B DNA binding activity. Taken together, our data implicate involvement of I kappa B kinase and MAPK signaling cascades in NIK-induced constitutive activation of NF-kappa B.  相似文献   

8.
9.
10.
11.
12.
NF-kappa B activity is regulated by its association with the inhibitory I kappa B proteins, among which I kappa B alpha and I kappa B beta are the most abundant. I kappa B proteins are widely expressed in different cells and tissues and bind to similar combinations of NF-kappa B proteins. The degradation of I kappa B proteins allows nuclear translocation of NF-kappa B and hence plays a critical role in NF-kappa B activation. Previous studies have demonstrated that, although both I kappa B proteins are phosphorylated by the same I kappa B kinase (IKK) complex, and their ubiquitination and degradation following phosphorylation are carried out by the same ubiquitination/degradation machinery, their kinetics of degradation are quite different. To better understand the underlying mechanism of the differences in degradation kinetics, we have carried out a systematic, comparative analysis of the ability of the IKK catalytic subunits to phosphorylate I kappa B alpha and I kappa B beta. We found that, whereas IKK alpha is a weak kinase for the N-terminal serines of both I kappa B isoforms, IKK beta is an efficient kinase for those residues in I kappa B alpha. However, IKK beta phosphorylates the N-terminal serines of I kappa B beta far less efficiently, thereby providing an explanation for the slower rate of degradation observed for I kappa B beta. Mutational analysis indicated that the regions around the two N-terminal serines collectively influence the relative phosphorylation efficiency, and no individual residue is critical. These findings provide the first systematic analysis of the ability of I kappa B alpha and I kappa B beta to serve as substrates for IKKs and help provide a possible explanation for the differential degradation kinetics of I kappa B alpha and I kappa B beta.  相似文献   

13.
14.
15.
16.
17.
18.
19.
Overexpression of multidrug resistance genes and their encoded P-glycoproteins is a major mechanism for the development of multidrug resistance in cancer cells. The hepatocarcinogen 2-acetylaminofluorene (2-AAF) efficiently activates rat mdr1b expression. However, the underlying mechanisms are largely unknown. In this study, we demonstrated that a NF-kappa B site on the mdr1b promoter was required for this induction. Overexpression of antisense p65 and I kappa B alpha partially abolished the induction. We then delineated the pathway through which 2-AAF activates NF-kappa B. 2-AAF treatment led to the increase of intracellular reactive oxygen species (ROS) which causes activation of IKK kinases, degradation of I kappa B beta (but not I kappa B alpha), and increase in NF-kappa B DNA binding activity. Consistent with the idea that ROS may participate in mdr1b regulation, antioxidant N-acetylcysteine inhibited the induction of mdr1b by 2-AAF. Overproduction of a physiological antioxidant glutathione (GSH) blocked the activation of IKK kinase complex and NF-kappa B DNA binding. Based on these results, we conclude that 2-AAF up-regulates mdr1b through the generation of ROS, activation of IKK kinase, degradation of I kappa B beta, and subsequent activation of NF-kappa B. This is the first report that reveals the specific cis-elements and signaling pathway responsible for the induction of mdr1b by the chemical carcinogen 2-AAF.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号