首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A deletion analysis of the Arabidopsis thaliana rbcS-1A promoter defined a 196 bp region (-320 to -125) sufficient to confer light-regulated expression on a heterologous Arabidopsis alcohol dehydrogenase (Adh) reporter gene in transgenic Nicotiana tabacum (tobacco) leaves. This region, which contains DNA sequences I, G and GT boxes, with homology to other ribulose-1,5-bisphosphate carboxylase small subunit (RBCS) gene promoter sequences, directed expression independent of orientation and relative position in the Adh promoter. Site-specific mutagenesis of these conserved sequences and subsequent expression analysis in transgenic tobacco showed that both G box and I box mutations in the context of the full (-1700 to +21) rbcS-1A promoter substantially reduced the expression of Adh and beta-glucuronidase (GUS) reporter genes. The G box has previously been shown to specifically bind in vitro a factor isolated from nuclear extracts of tomato and Arabidopsis. This factor (GBF) is distinct from the factor GT-1 which binds to adjacent GT boxes in the pea rbcS-3A promoter. Multiple mutations in putative Arabidopsis rbcS-1A promoter GT boxes had no pronounced affect on expression, possibly due to a redundancy of these sites. Experiments in which rbcS-1A promoter fragments were fused to truncated 35S CaMV (cauliflower mosaic virus) promoter--GUS reporter constructs showed that cis-acting CaMV promoter elements could partially restore expression to G-box-mutated rbcS-1A sequences.  相似文献   

2.
3.
The promoters of a variety of plant genes are characterized by the presence of a G-box (CCACGTGG) or closely related DNA motifs. These genes often exhibit quite diverse expression characteristics and in many cases the G-box sequence has been demonstrated to be essential for expression. The G-box of the Arabidopsis rbcS-1A gene is bound by a protein, GBF, identified in plant nuclear extracts. Here we report the isolation of three Arabidopsis thaliana cDNA clones encoding GBF proteins referred to as GBF1, GBF2 and GBF3. GBF1 and GBF2 mRNA is present in light and dark grown leaves as well as in roots. In contrast, GBF3 mRNA is found mainly in dark grown leaves and in roots. The deduced amino acid sequences of the three cDNAs indicate that each encodes a basic/leucine zipper protein. In addition, all three proteins are characterized by an N-terminal proline-rich domain. Homodimers of the three proteins specifically recognize the G-box motif, with GBF1 and GBF3 binding symmetrically to this palindromic sequence. In contrast, GBF2 binds to the symmetrical G-box sequence in such a way that the juxtaposition of the protein and the DNA element is clearly asymmetric and hence distinct from that observed for the other two proteins. The fact that GBF1, GBF2 and GBF3 possess both distinct DNA binding properties and expression characteristics prompt us to entertain the notion that these proteins may individually mediate distinct subclasses of expression properties assigned to the G-box. Furthermore, we demonstrate that GBF1, GBF2 and GBF3 heterodimerize and these heterodimers also interact with the G-box, suggesting a potential mechanism for generating additional diversity from these GBF proteins.  相似文献   

4.
Molecular dissection of GT-1 from Arabidopsis.   总被引:4,自引:1,他引:3       下载免费PDF全文
K Hiratsuka  X Wu  H Fukuzawa    N H Chua 《The Plant cell》1994,6(12):1805-1813
We isolated and characterized an Arabidopsis cDNA encoding the DNA binding protein GT-1. This protein factor, which contains 406 amino acids, is highly homologous to the previously described tobacco DNA binding protein GT-1a/B2F but is 26 amino acids longer. Recombinant Arabidopsis GT-1, which was obtained from in vitro translation, bound to probes consisting of four copies of pea small subunit of ribulose bisphosphate carboxylase rbcS-3A box II and required the same GGTTAA core binding site as the binding activity of an Arabidopsis nuclear protein preparation. However, unlike the truncated tobacco GT-1a prepared from Escherichia coli extracts, the full-length Arabidopsis GT-1 bound to pea rbcS-3A box III and Arabidopsis chlorophyll a/b binding protein CAB2 light-responsive elements, both of which contain GATA motifs. Deletion and mutational analyses suggested that the predicted trihelix region of GT-1 is essential for DNA binding. Moreover, GT-1 binds to target DNA as a dimer, and its C-terminal region contains a putative dimerization domain that enhances the binding activity. Transient expression of the GT-1::beta-glucuronidase fusion protein in onion cells revealed the presence of a nuclear localization signal(s) within the first 215 amino acids of GT-1.  相似文献   

5.
6.
Previous studies of boxes II (-151 to -138) and III (-125 to -114), binding sites for the nuclear factor GT-1 within the -166 deleted promoter of the ribulose-1,5-bisphosphate carboxylase-3A (rbcS-3A) gene, suggested that GT-1 might act in concert with an additional protein to confer light-responsive rbcS-3A expression. In this work, S1 analysis of RNA isolated from transgenic tobacco plants carrying mutant rbcS-3A constructs led to the identification of two short sequences located at the 5' and 3' ends of box III that are required for expression. These two sequences serve as binding sites for two novel proteins, 3AF5 and 3AF3. Gel shift studies using tetramerized binding sites for both 3AF5 and 3AF3 showed that complexes with faster mobilities were formed using nuclear extracts prepared from dark-adapted plants compared with those from light-grown tobacco plants. Phosphatase treatment of extracts from light-grown plants resulted in the formation of complexes with faster mobility. Although the binding of 3AF3 to its target site is dependent upon phosphorylation, the binding of 3AF5 does not appear to be affected by its phosphorylation state. These results suggest that the phosphorylated forms of both 3AF5 and 3AF3 are required for -166 rbcS-3A expression but that the mechanisms differ by which phosphorylation regulates the activities of 3AF5 and 3AF3.  相似文献   

7.
Several promoter elements have previously been shown to influence the expression of the cab-E gene in Nicotiana plumbaginifolia. Here we demonstrate, by electrophoretic mobility shift and methylation interference assays, that a complex pattern of protein-DNA interactions characterizes this promoter. Among the multiple proteins identified, we focused on five different factors which either occupied important regulatory elements and/or were present in relatively large amounts in nuclear extracts. All of these proteins were distinguished on the basis of their recognition sequence and other biochemical parameters. One, GBF, interacted with a single sequence within the cab-E promoter homologous to the G-box found in many photoregulated and other plant promoters. A second factor, GA-1, bound to the GATA element which is located between the CAAT and TATA boxes of the cab-E and all other LHCII Type I CAB promoters. GA-1 also interacted in vitro with the I-boxes of the Arabidopsis rbcS-1A promoter and the as-2 site of the CaMV 35S promoter. Two other factors, GC-1 and AT-1, bound to multiple recognition sites localized within the GC-rich and AT-rich elements, respectively. GT-1, a protein which interacts with promoters of other light-regulated genes, bound to seven distinct sites distributed throughout the cab-E promoter.  相似文献   

8.
9.
10.
P J Green  S A Kay    N H Chua 《The EMBO journal》1987,6(9):2543-2549
Pea nuclear extracts were used in gel retardation assays and DNase I footprinting experiments to identify a protein factor that specifically interacts with regulatory DNA sequences upstream of the pea rbcS-3A-gene. This factor, designated GT-1, binds to two short sequences (boxes II and III) in the -150 region that are known to function as light-responsive elements (LREs) in transgenic tobacco. Binding of GT-1 to homologous sequences further upstream (boxes II and III in the -220 region) indicates that these boxes comprise the redundant LRE that functions in vivo when boxes II and III are deleted. In both box II and box II, methylation interference experiments demonstrate that two adjacent G residues are critical for GT-binding. Single Gs present in boxes III and III are also important. Since GT-1 is present in nuclear extracts from leaves of light-grown and dark-adapted pea plants, its regulatory role does not depend on de novo synthesis. Thus if GT-1 binds differentially in vivo it must be postranslationally modified or sterically blocked from binding by another factor in response to light.  相似文献   

11.
从大豆冀nf37和冀豆15中克隆了大豆球蛋白G1基因的启动子片段。序列分析表明,两种启动子片段均为688bp,与GenBank现有的3种启动子序列(四川大豆(DQ250808)、南农87-c38(AY649096)和Dare(X15121))间的同源性在96.4%~99.6%之间。其中来自冀nf37的启动子片段除Legumin盒上有一个碱基差异外,其它元件与DQ250808完全相同,据此推测该启动子片段具有种子特异性启动子活性。将其与已有γ-生育酚甲基转移酶基因连接,构建了种子特异性表达载体pBG1TMT,为通过代谢工程手段调控油料作物种子维生素E组成、提高其营养品质奠定了基础。  相似文献   

12.
13.
14.
15.
16.
Expression of a wheat alpha-gliadin gene in Saccharomyces cerevisiae   总被引:3,自引:0,他引:3  
  相似文献   

17.
18.
19.
Characterization of a maize G-box binding factor that is induced by hypoxia   总被引:10,自引:0,他引:10  
G-box cis-acting DNA sequence elements are present in the promoter region of a number of signal-inducible plant genes. In many cases this motif is essential for gene expression. Maize nuclear extracts contain a protein complex that binds specifically to the G-box sequence. Previously, a protein called GF14 was described that is physically associated with the G-box binding complex, but is not a DNA-binding factor in and of itself. This paper reports the isolation of a cDNA encoding a maize G-box binding factor (GBF). The deduced amino acid sequence indicates that maize GBF1 is a basic region-leucine zipper protein. GBF1 binds to the G-box element with specificity similar to that of the binding activity in nuclear extracts. Furthermore, maize GBF1 and the factor detected in nuclear extract are identical in their molecular weight and are immunologically related. GBF1 mRNA accumulates rapidly in hypoxically induced maize cells prior to the increase in Adh1 mRNA levels. Taken together with results that indicate that GBF1 binds to the hypoxia-responsive promoter of maize Adh1, these observations suggest that GBF1 may be one of the factors involved in the activation of Adh1.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号