首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Many light-regulated genes contain a conserved GATA motif in their 5-upstream region. We have characterized in detail the GATA-binding factor, CGF-1, which binds within a 73 bp TATA-proximal light/circadian regulatory element in the Arabidopsis cab2 promoter and to two more sites farther upstream. CGF-1 was found to be distinct from other metal-dependent GATA-binding factors, but to have the same sequence requirements for binding and similar physical and chemical properties as GT-1, a factor required for light regulation of the tobacco rbcS-3A gene. CGF-1 was found to be constitutively present in extracts and was shown to be immunologically related to GT-1. The close similarity between CGF-1 and GT-1 suggests that a GT-1-like factor is involved in the phytochrome/circadian regulation of the cab2 gene. CGF-1 and GT-1 were also found to have similar sequence specificities to another constitutively-regulated GATA factor, IBF-2b, which binds the I box region of the tomato nitrate reductase gene. Of three complexes detected using an IBF-2b-specific probe, only one was identical to CGF-1/GT-1. The other two were similar to IBF-2b, demonstrating that CGF-1/GT-1, although very similar, are actually distinct from IBF-2b. These data indicate that more than one factor can bind to the same short sequence and may indicate how constitutively present factors like GT-1 can play a role in light regulation.  相似文献   

2.
3.
Carre IA  Kay SA 《The Plant cell》1995,7(12):2039-2051
  相似文献   

4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
The nuclear gene rps1 coding for the spinach plastid ribosomal protein CS1 exhibits both a constitutive and leaf-specific expression pattern. In contrast to other chloroplast-related genes like rbcS and cab, the leaf induction of rps1 expression is light-independent. These unique features of rps1 expression provide good models to study the mechanisms regulating plastid development and differentiation in higher plants. We report on the identification of a spinach leaf nuclear factor, designated S1F, interacting with the rps1 promoter. The S1F binding site is conserved in the promoter region of many plastid-related genes, including rbcS, cab, and rpl21. A binding activity similar to S1F was detected in nuclear extract from dark-grown de-differentiated soybean suspension cells. Through site-specific mutagenesis and transient expression in soybean cell protoplasts, we show that the S1F binding site is a negative element down-regulating the promoter activity of rps1. A ligated tetramer of S1F site was able to repress activity of the cauliflower mosaic virus 35 S promoter extending the negative function of the S1F binding site on promoter activity.  相似文献   

16.
17.
Xu X  Hotta CT  Dodd AN  Love J  Sharrock R  Lee YW  Xie Q  Johnson CH  Webb AA 《The Plant cell》2007,19(11):3474-3490
Plants have circadian oscillations in the concentration of cytosolic free calcium ([Ca(2+)](cyt)). To dissect the circadian Ca(2+)-signaling network, we monitored circadian [Ca(2+)](cyt) oscillations under various light/dark conditions (including different spectra) in Arabidopsis thaliana wild type and photoreceptor and circadian clock mutants. Both red and blue light regulate circadian oscillations of [Ca(2+)](cyt). Red light signaling is mediated by PHYTOCHROME B (PHYB). Blue light signaling occurs through the redundant action of CRYPTOCHROME1 (CRY1) and CRY2. Blue light also increases the basal level of [Ca(2+)](cyt), and this response requires PHYB, CRY1, and CRY2. Light input into the oscillator controlling [Ca(2+)](cyt) rhythms is gated by EARLY FLOWERING3. Signals generated in the dark also regulate the circadian behavior of [Ca(2+)](cyt). Oscillations of [Ca(2+)](cyt) and CHLOROPHYLL A/B BINDING PROTEIN2 (CAB2) promoter activity are dependent on the rhythmic expression of LATE ELONGATED HYPOCOTYL and CIRCADIAN CLOCK-ASSOCIATED1, but [Ca(2+)](cyt) and CAB2 promoter activity are uncoupled in the timing of cab1 (toc1-1) mutant but not in toc1-2. We suggest that the circadian oscillations of [Ca(2+)](cyt) and CAB2 promoter activity are regulated by distinct oscillators with similar components that are used in a different manner and that these oscillators may be located in different cell types in Arabidopsis.  相似文献   

18.
Chong NW  Codd V  Chan D  Samani NJ 《FEBS letters》2006,580(18):4469-4472
Increased plasminogen activator inhibitor-1 (PAI-1) activity is associated with greater risk of myocardial infarction. PAI-1 expression is regulated by a 4G/5G promoter polymorphism. The 4G allele is associated with higher PAI-levels and greater circadian variation. Here we show that clock protein heterodimers BMAL/CLOCK cause greater activation (approximately 2-fold, P<0.05) of the 4G allele. Site-directed mutagenesis studies suggest that clock genes act on two canonical E-boxes to regulate PAI-1 promoter activity. These results identify a potential novel mechanism whereby allele-specific clock genes - mediated modulation of PAI-1 expression may contribute to circadian variation in cardiac risk.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号