首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Escherichia coli K1 is the most common gram-negative bacterium causing neonatal meningitis. The outer membrane protein A (OmpA) assembles a beta-barrel structure having four surface-exposed loops in E. coli outer membrane. OmpA of meningitis-causing E. coli K1 is shown to contribute to invasion of the human brain microvascular endothelial cells (HBMEC), the main cellular component of the blood-brain barrier (BBB). However, the direct evidence of OmpA protein interacting with HBMEC is not clear. In this study, we showed that OmpA protein, solubilized from the outer membrane of E. coli, adhered to HBMEC surface. To verify OmpA interaction with the HBMEC, we purified N-terminal membrane-anchoring beta-barrel domain of OmpA and all surface-exposed loops deleted OmpA proteins, and showed that the surface-exposed loops of OmpA were responsible for adherence to HBMEC. These findings indicate that the OmpA is the adhesion molecule with HBMEC and the surface-exposed loops of OmpA are the determinant of this interaction.  相似文献   

2.
The mortality and morbidity associated with neonatal gram-negative meningitis have remained significant despite advances in antimicrobial chemotherapy. Escherichia coli K1 is the most common gram-negative organism causing neonatal meningitis. Our incomplete knowledge of the pathogenesis of this disease is one of the main reasons for this high mortality and morbidity. We have previously established both in vitro and in vivo models of the blood-brain barrier (BBB) using human brain microvascular endothelial cells (HBMEC) and hematogenous meningitis in neonatal rats, respectively. With these in vitro and in vivo models, we have shown that successful crossing of the BBB by circulating E. coli requires a high-degree of bacteremia, E. coli binding to and invasion of HBMEC, and E. coli traversal of the BBB as live bacteria. Our previous studies using TnphoA, signature-tagged mutagenesis and differential fluorescence induction identified several E. coli K1 determinants such as OmpA, Ibe proteins, AslA, TraJ and CNF1 contributing to invasion of HBMEC in vitro and traversal of the blood-brain barrier in vivo. We have shown that some of these determinants interact with specific receptors on HBMEC, suggesting E. coli translocation of the BBB is the result of specific pathogen-host cell interactions. Recent studies using functional genomics techniques have identified additional E. coli K1 factors that contribute to the high degree of bacteremia and HBMEC binding/invasion/transcytosis. In this review, we summarize the current knowledge on the mechanisms underlying the successful E. coli translocation of the BBB.  相似文献   

3.
Escherichia coli K1 strains are predominant in causing neonatal meningitis. We have shown that invasion of brain microvascular endothelial cells (BMEC) is a prerequisite for E. coli K1 crossing of the blood-brain barrier. BMEC invasion by E. coli K1 strain RS218, however, has been shown to be significantly greater with stationary-phase cultures than with exponential-phase cultures. Since RpoS participates in regulating stationary-phase gene expression, the present study examined a possible involvement of RpoS in E. coli K1 invasion of BMEC. We found that the cerebrospinal fluid isolates of E. coli K1 strains RS218 and IHE3034 have a nonsense mutation in their rpoS gene. Complementation with the E. coli K12 rpoS gene significantly increased the BMEC invasion of E. coli K1 strain IHE3034, but failed to significantly increase the invasion of another E. coli K1 strain RS218. Of interest, the recovery of E. coli K1 strains following environmental insults was 10-100-fold greater on Columbia blood agar than on LB agar, indicating that growing medium is important for viability of rpoS mutants after environmental insults. Taken together, our data suggest that the growth-phase-dependent E. coli K1 invasion of BMEC is affected by RpoS and other growth-phase-dependent regulatory mechanisms.  相似文献   

4.
5.
Escherichia coli K1 invasion of microvascular endothelial cells of human brain (HBMEC) is required for E. coli penetration into the central nervous system, but the microbial-host interactions that are involved in this invasion of HBMEC remain incompletely understood. We have previously shown that FimH, one of the E. coli determinants contributing to the binding to and invasion of HBMEC, induces Ca2+ changes in HBMEC. In the present study, we have investigated in detail the role of cellular calcium signaling in the E. coli K1 invasion of HBMEC, the main constituents of the blood-brain barrier. Addition of the meningitis-causing E. coli K1 strain RS218 (O18:K1) to HBMEC results in transient increases of intracellular free Ca2+. Inhibition of phospholipase C with U-73122 and the chelating of intracellular Ca2+ by BAPTA/AM reduces bacterial invasion of HBMEC by approximately 50%. Blocking of transmembrane Ca2+ fluxes by extracellular lanthanum ions also inhibits the E. coli invasion of HBMEC by approximately 50%. In addition, E. coli K1 invasion is significantly inhibited when HBMEC are pretreated by the calmodulin antagonists, trifluoperazine or calmidazolium, or by ML-7, a specific inhibitor of Ca2+/calmodulin-dependent myosin light-chain kinase. These findings indicate that host intracellular Ca2+ signaling contributes in part to E. coli K1 invasion of HBMEC. This work was supported by the American Heart Association (grant SDG 0435177N to Y.K.) and by NIH grants (to K.S.K.).  相似文献   

6.
Escherichia coli K1 traversal of the human brain microvascular endothelial cells (HBMEC) that constitute the blood-brain barrier (BBB) is a complex process involving E. coli adherence to and invasion of HBMEC. In this study, we demonstrated that human transforming growth factor-beta-1 (TGF-beta1) increases E. coli K1 adherence, invasion, and transcytosis in HBMEC. In addition, TGF-beta1 increases RhoA activation and enhances actin condensation in HBMEC. We have previously shown that E. coli K1 invasion of HBMEC requires phosphatidylinositol-3 kinase (PI3K) and RhoA activation. TGF-beta1 increases E. coli K1 invasion in PI3K dominant-negative HBMEC, but not in RhoA dominant-negative HBMEC, indicating that TGF-beta1-mediated increase in E. coli K1 invasion is RhoA-dependent, but not PI3K-dependent. Our findings suggest that TGF-beta1 treatment of HBMEC increases E. coli K1 adherence, invasion, and transcytosis, which are probably dependent on RhoA.  相似文献   

7.
Escherichia coli K1 meningitis is a serious central nervous system disease with unchanged mortality and morbidity rates for last few decades. Intercellular adhesion molecule 1 (ICAM-1) is a cell adhesion molecule involved in leukocyte trafficking toward inflammatory stimuli at the vascular endothelium; however, the effect of E. coli invasion of endothelial cells on the expression of ICAM-1 is not known. We demonstrate here that E. coli K1 invasion of human brain microvascular endothelial cells (HBMEC) selectively up-regulates the expression of ICAM-1, which occurs only in HBMEC invaded by the bacteria. The interaction of outer membrane protein A (OmpA) of E. coli with its receptor, Ecgp, on HBMEC was critical for the up-regulation of ICAM-1 and was depend on PKC-alpha and PI3-kinase signaling. Of note, the E. coli-induced up-regulation of ICAM-1 was not due to the cytokines secreted by HBMEC upon bacterial infection. Activation of NF-kappaB was required for E. coli mediated expression of ICAM-1, which was significantly inhibited by over-expressing the dominant negative forms of PKC-alpha and p85 subunit of PI3-kinase. The increased expression of ICAM-1 also enhanced the binding of THP-1 cells to HBMEC. Taken together, these data suggest that localized increase in ICAM-1 expression in HBMEC invaded by E. coli requires a novel interaction between OmpA and its receptor, Ecgp.  相似文献   

8.
脑膜炎大肠杆菌K1株ppk1基因致病机制初探   总被引:2,自引:0,他引:2  
【目的】构建脑膜炎大肠杆菌K1(Escherichia coli,E.coli K1)株E44的聚磷酸盐激酶1(Polyphosphate kinase 1,PPK1)基因敲除株,并对其生物学功能进行初步研究,为明确ppk1基因在E.coli K1株致脑膜炎机制中的作用奠定基础。【方法】利用自杀质粒pCVD442及基因同源重组技术敲除E.coli K1株E44中的ppk1基因,构建ppk1缺失突变株Δppk1;体外比较野生株和突变株在低营养及氧化压力情况下的生存能力;考察二者对人脑微血管内皮细胞(Human brain microvascular endothelial cells,HBMEC)的黏附能力;通过测定乳酸脱氢酶(Lactic dehydrogenase,LDH)释放活性,比较野生株和突变株对HBMEC的损伤效应。【结果】PCR及序列分析证实,突变株缺失全长ppk1基因。与野生株E44相比,ppk1突变株Δppk1在低营养环境中和氧化刺激条件下的生存能力明显降低。相对于E44,Δppk1对HBMEC的黏附能力减弱。与HBMEC孵育后,突变株孵育组HBMEC的LDH释放活性明显低于野生株孵育组。【结论】ppk1对E.coli K1株E44在低营养环境中的生存、抵抗氧化压力,以及黏附HBMEC和对细胞的毒性损伤有重要作用。  相似文献   

9.
Escherichia coli K1 is the most common Gram-negative organism causing meningitis, and its invasion of human brain microvascular endothelial cells (HBMEC) is a prerequisite for penetration into the central nervous system. We have reported previously that cytotoxic necrotizing factor 1 (CNF1) contributes to E. coli K1 invasion of HBMEC and interacts with 37-kDa laminin receptor precursor (37LRP) of HBMEC, which is a precursor of 67-kDa laminin receptor (67LR). In the present study, we examined the role of 67LR in the CNF1-expressing E. coli K1 invasion of HBMEC. Immunofluorescence microscopy and ligand overlay assays showed that 67LR is present on the HBMEC membrane and interacts with CNF1 protein as well as the CDPGYIGSR laminin peptide. 67LR was up-regulated and clustered at the sites of E. coli K1 on HBMEC in a CNF1-dependent manner. Pretreatment of CNF1+ E. coli K1 with recombinant 37-kDa laminin receptor precursor reduced the invasion rate to the level of Deltacnf1 mutant, and the invasion rate of CNF1+ E. coli K1 was enhanced in 67LR-overexpressing HBMEC, indicating 67LR is involved in the CNF1+ E. coli K1 invasion of HBMEC. Coimmunoprecipitation analysis showed that, upon incubation with CNF1+ E. coli K1 but not with Deltacnf1 mutant, focal adhesion kinase and paxillin were recruited and associated with 67LR. When immobilized onto polystyrene beads, CNF1 was sufficient to induce internalization of coupled beads into HBMEC through interaction with 67LR. Taken together, this is the first demonstration that E. coli K1 invasion of HBMEC occurs through the ligand-receptor (CNF1-67LR) interaction, and 67LR promotes CNF1-expressing E. coli K1 internalization of HBMEC.  相似文献   

10.
Bacterial pathogens may breach the blood-brain barrier (BBB) and invade the central nervous system through paracellular and/or transcellular mechanisms. Transcellular penetration, e.g., transcytosis across the BBB has been demonstrated for Escherichia coli K1, group B streptococcus, Listeria monocytogenes, Citrobacter freundii and Streptococcus pneumonia strains. Genes contributing to invasion of brain microvascular endothelial cells include E. coli K1 genes ompA, ibeA, ibeB, and yijP. Understanding the mechanisms of bacterial penetration across the BBB may help develop novel approaches to preventing bacterial meningitis.  相似文献   

11.
Invasion of brain microvascular endothelial cells (BMEC) is a prerequisite for successful crossing of the blood-brain barrier by Escherichia coli K1. We have previously demonstrated the requirement of cytoskeletal rearrangements and activation of focal adhesion kinase (FAK) in E. coli K1 invasion of human BMEC (HBMEC). The current study investigated the role of phosphatidylinositol 3-kinase (PI3K) activation and PI3K interaction with FAK in E. coli invasion of HBMEC. PI3K inhibitor LY294002 blocked E. coli K1 invasion of HBMEC in a dose-dependent manner, whereas an inactive analogue LY303511 had no such effect. In HBMEC, E. coli K1 increased phosphorylation of Akt, a downstream effector of PI3K, which was completely blocked by LY294002. In contrast, non-invasive E. coli failed to activate PI3K. Overexpression of PI3K mutants Deltap85 and catalytically inactive p110 in HBMEC significantly inhibited both PI3K/Akt activation and E. coli K1 invasion of HBMEC. Stimulation of HBMEC with E. coli K1 increased PI3K association with FAK. Furthermore, PI3K/Akt activation was blocked in HBMEC-overexpressing FAK dominant-negative mutants (FRNK and Phe397FAK). These results demonstrated the involvement of PI3K signaling in E. coli K1 invasion of HBMEC and identified a novel role for PI3K interaction with FAK in the pathogenesis of E. coli meningitis.  相似文献   

12.
Escherichia coli K1 has been shown to invade human brain microvascular endothelial cells (HBMEC) in vitro and translocate the blood-brain barrier in vivo, but it is unclear how E. coli K1 traverses HBMEC. We have previously shown that internalized E. coli K1 is localized within membrane-bound vacuole in HBMEC. The present study was carried out to understand intracellular trafficking of E. coli K1 containing vacuoles (ECVs) in HBMEC. ECVs initially acquired two early endosomal marker proteins, EEA1 and transferrin receptor. Rab7 and Lamp-1, markers for late endosome and late endosome/lysosome, respectively, were subsequently recruited on the ECVs, which was confirmed with flow cytometry analysis of ECVs. However, ECVs did not obtain cathepsin D, a lysosomal enzyme, even after 120 min incubation, suggesting that E. coli K1 avoids lysosomal fusion. In contrast, isogenic K1 capsule-deletion mutant obtained early and late endosomal markers on vacuolar membranes and allowed lysosomal fusion with subsequent degradation inside vacuoles. This observation was consistent with the decreased intracellular survival of K1 capsule-deletion mutant, even though the binding and internalization rates of the mutant were higher than those of the parent E. coli K1 strain. This is the first demonstration that E. coli K1, via the K1 capsule on the bacterial surface, modulates the maturation process of ECVs and prevents fusion with lysosomes, which is an event necessary for traversal of the blood-brain barrier as live bacteria.  相似文献   

13.
14.
15.
16.
Adherence of type-1-fimbriate Salmonella enterica and Escherichia coli to immobilized proteins of the extracellular matrix and reconstituted basement membranes was studied. The type-1-fimbriate strain SH401 of S. enterica serovar Enteritidis showed good adherence to laminin, whereas the adherence to fibronectin, type I, type III, type IV or type V collagens was poor. Only minimal adherence to the matrix proteins was seen with a non-fimbriate strain of S. enterica serovar Typhimurium. A specific and mannoside-inhibitable adhesion to laminin was exhibited by the recombinant E. coli strain HB101(plSF101) possessing fim genes of Typhimurium. Adherence to laminin of strain SH401 was inhibited by Fab fragments against purified SH401 fimbriae, and a specific binding to laminin, of the purified fimbriae, was demonstrated using fimbriae-coated fluorescent microparticles. Periodate treatment of laminin abolished the bacterial adhesion as well as the fimbrial binding. Specific adhesion to immobilized laminin was also shown by the type-1 -fimbriate E. coli strain 2131 and the recombinant strain E. coli HB101(pPKL4) expressing the cloned type-1-fimbriae genes of E. coli. Adhesion to laminin of strain HB101(pPKL4) was inhibited by mannoside, and no adherence was seen with the fimH mutant E. coli HB101(pPKL5/pPKL53) lacking the fimbrial lectin subunit. The type-1 fimbriate strains also adhered to reconstituted basement membranes from mouse sarcoma cells and human placenta. Adhesion of strains HB101(plSF101) and HB101(pPKL4) to both basement membrane preparations was inhibited by mannoside. We conclude that type-1 fimbriae of S. enterica and E. coli bind to oMgomannoside chains of the lamjnjn network in basement membranes.  相似文献   

17.
Intestinal epithelial cells are able to differentially interact with commensal or pathogenic microorganisms, triggering a physiological or destructive inflammation, respectively. To mimic commensal-enteroinvasive bacteria-host cell interaction, we infected Caco-2 cells with noninvasive Escherichia coli HB101 and with recombinant invasive E. coli HB101(pRI203). Using DNA microarray mRNA profiling and ELISA assays, we studied the expression of several cytokine and cytokine-related genes in infected Caco-2 cells in the absence or presence of bovine lactoferrin (bLf). Infection of Caco-2 cells with the noninvasive strain induced a slight increase in the expression of interleukin 8 (IL-8), whereas infection with invasive E. coli HB101(pRI203) induced a significant increase in the expression of IL-8 as well as other pro-inflammatory cytokines. The addition of bLf, in native- or holo-form, did not influence expression of cytokine genes by uninfected Caco-2 cells, but it decreased expression of IL-8 by cells infected with E.coli HB101. Moreover, except for IL-8, bLfs dramatically downregulated pro-inflammatory cytokines upexpressed by Caco-2 cells infected with the invasive strain. Although IL-8 was decreased by bLfs, it remained upregulated, suggesting that it could be a signal of persistence of intracellular bacteria. The bLf ability to reduce expression of some pro-inflammatory cytokines, which appears independent of its iron saturation, might represent an important natural mechanism in regulating epithelial cell responses to pathogenic bacteria and in limiting cell damage and the spread of infections.  相似文献   

18.
The generation of intense inflammation in the subarachnoid space in response to meningitis-causing bacteria contributes to brain dysfunction and neuronal injury in bacterial meningitis. Microglia, the major immune effector cells in the central nervous system (CNS), become activated by bacterial components to produce proinflammatory immune mediators. In this study, we showed that FimH adhesin, a tip component of type 1 fimbriae of meningitis-causing Escherichia coli K1, activated the murine microglial cell line, BV-2, which resulted in the production of nitric oxide and the release of tumor necrosis factor-alpha. Mitogen-activated protein kinases, ERK and p-38, and nuclear factor-kappaB were involved in FimH adhesin-mediated microglial activation. These findings suggest that FimH adhesin contributes to the CNS inflammatory response by virtue of activating microglia in E. coli meningitis.  相似文献   

19.
Escherichia coli, the most common Gram-negative bacterium that causes meningitis in neonates, invades human brain microvascular endothelial cells (HBMEC) by rearranging host cell actin via the activation of phosphatidylinositol 3-kinase (PI3K) and PKC-alpha. Here, further, we show that phospholipase (PLC)-gamma1 is phosphorylated on tyrosine 783 and condenses at the HBMEC membrane beneath the E. coli entry site. Overexpression of a dominant negative (DN) form of PLC-gamma, the PLC-z fragment, in HBMEC inhibits PLC-gamma1 activation and significantly blocks E. coli invasion. PI3K activation is not affected in PLC-z/HBMEC upon infection, whereas PKC-alpha phosphorylation is completely abolished, indicating that PLC-gamma1 is downstream of PI3K. Concomitantly, the phosphorylation of PLC-gamma1 is blocked in HBMEC overexpressing a dominant negative form of the p85 subunit of PI3K but not in HBMEC overexpressing a dominant negative form of PKC-alpha. In addition, the recruitment of PLC-gamma1 to the cell membrane in both PLC-z/HBMEC and DN-p85/HBMEC is inhibited. Activation of PI3K is associated with the conversion of phosphatidylinositol 4,5-bisphosphate (PIP2) to phosphatidylinositol 1,4,5-trisphosphate (PIP3), which in turn recruits PLC-gamma1 to the cell membrane via its interaction with pleckstrin homology domain of PLC-gamma1. Utilizing the pleckstrin homology domains of PKC-delta and Btk proteins fused to green fluorescent protein (GFP), which specifically interact with PIP2 and PIP3, respectively, we show herein that E. coli invasion induces the breakdown of PIP2 at the plasma membrane near the site of E. coli interaction. PIP3, on the other hand, recruits the GFPBkt to the cell membrane beneath the sites of E. coli attachment. Our studies further show that E. coli invasion induces the release of Ca2+ from intracellular pools as well as the influx of Ca2+ from the extracellular medium. This elevation in Ca2+ levels is completely blocked both in PLC-z/HBMEC and DN-p85/HBMEC, but not in DN-PKC/HBMEC. Taken together, these results suggest that E. coli infection of HBMEC induces PLC-gamma1 activation in a PI3K-dependent manner to increase Ca2+ levels in HBMEC. This is the first report demonstrating the recruitment of activated PLC-gamma1 to the sites of bacterial entry.  相似文献   

20.
Bacterial meningitis is a serious central nervous system infection and Escherichia coli K1 (E. coli K1) is one of the leading etiological agents that cause meningitis in neonates. Outer membrane protein A (OmpA) of E. coli K1 is a major virulence factor in the pathogenesis of meningitis, and interacts with human brain microvascular endothelial cells (HBMEC) to cross the blood-brain barrier. Using site-directed mutagenesis, we demonstrate that two N-glycosylation sites (NG1 and NG2) in the extracellular domain of OmpA receptor, Ecgp96 are critical for bacterial binding to HBMEC. E. coli K1 invasion assays using CHO-Lec1 cells that express truncated N-glycans, and sequential digestion of HBMEC surface N-glycans using specific glycosidases showed that GlcNAc1-4GlcNAc epitopes are sufficient for OmpA interaction with HBMEC. Lack of NG1 and NG2 sites in Ecgp96 inhibits E. coli K1 OmpA induced F-actin polymerization, phosphorylation of protein kinase C-α, and disruption of transendothelial electrical resistance required for efficient invasion of E. coli K1 in HBMEC. Furthermore, the microvessels of cortex and hippocampus of the brain sections of E. coli K1 infected mice showed increased expression of glycosylated Ecgp96. Therefore, the interface of OmpA and GlcNAc1-4GlcNAc epitope interaction would be a target for preventative strategies against E. coli K1 meningitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号