首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Abstract

One of the key factors affecting larval survival is food availability. This study investigated the influence of starvation on the nutritional condition of zoea I larvae of Pleuroncodes monodon. Experimental treatments with differential periods of starvation and subsequent feeding (point of no return: PNR) in addition to treatments with differential periods of feeding and subsequent starvation (point of reserve saturation: PRS) were used to quantify larval survival and the occurrence of lipid droplets in the hepatopancreas. Larval survival differed significantly depending on the starvation and feeding treatment administered. A high percentage of survival was found for the starvation treatment until day 1 (S1-PNR), for the feeding treatment until day 4 (F4-PRS), and for the continuously fed control groups (FC). Survival was minimal for the starvation treatment lasting until day 7 (S7-PNR) and for the continuously starved control groups (SC). In turn, similar tendencies were observed in the utilization of energy reserves; the lipid droplets significantly decreased throughout the PNR treatment, while the presence of lipid droplets gradually increased during the PRS treatment. All these larval condition parameters can be used in fishery models of population dynamics, which estimate the nutritional status of the offspring and their effects on survival.  相似文献   

2.
Effects of reduced salinities on dry weight (DW) and biochemical composition (total lipid and protein contents) of zoea 1 larvae were evaluated in four decapod crustacean species differing in salinity tolerance (Cancer pagurus, Homarus gammarus, Carcinus maenas, Chasmagnathus granulata). The larvae were exposed to two different reduced salinities (15‰ and 25‰ in C. granulata, 20‰ and 25‰ in the other species) for a long (ca. 50% of the zoea 1 moulting cycle) or a short period (16 h, starting at ca. 40% of the moulting cycle), while a control group was continually maintained in seawater (32‰).In general, the increments in dry weight, lipid and protein content were lower at the reduced salinities than in the control groups. In the zoea 1 of H. gammarus (stenohaline) and C. pagurus (most probably also stenohaline), the lipid and protein contents varied greatly among treatments: larvae exposed to low salinities exhibited very low lipid and protein contents at the end of the experiments compared to the controls. In some cases, there were negative growth increments, i.e. the larvae had, after the experimental exposure, lower lipid and protein contents than at the beginning of the experiment. C. maenas (moderately euryhaline) showed a lower variation in protein and lipid content than the above species. The zoea 1 of C. granulata (fairly euryhaline) showed the lowest variability in dry weight, protein and lipid content. Since salinity tolerance (eury- v. stenohalinity) is associated with the osmoregulatory capacity, our results suggest a relationship between the capability for osmoregulation and the degree of change in the biochemical composition of larvae exposed to variable salinities.Besides larval growth of these species should be affected by natural reductions of salinity occurring in coastal areas at different time scales. These effects may be potentially important for population dynamics since they should influence the number and quality of larvae reaching metamorphosis.  相似文献   

3.
Chasmagnathus granulata is a South American crab occurring in estuarine salt marshes of the Brazilian, Uruguayan and Argentine coasts. Life history is characterized by an export strategy of its larval stages. I reviewed information on experimental manipulation of salinity during embryonic and larval development (pre- and posthatching salinities), and on habitat characteristics of C. granulata in order to determine potential effects of larval response to salinity in the field and to suggest consequences for the population structure. Local populations are spread over coastal areas with different physical characteristics. Benthic phases occupy estuaries characterized by different patterns of salinity variation, and release larvae to coastal waters characterized by strong salinity gradients. The zoea 1 of C. granulata showed a strong acclimatory response to low salinity. This response operated only during the first weeks of development (during zoeae 1 and 2) since subsequent larval survival at low posthatching salinities was consistently low. Larvae developing at low salinity frequently followed a developmental pathway with five instead of four zoeal stages. The ability to acclimate and the variability in larval development (i.e. the existence of alternative developmental pathways) could be interpreted as a strategy to buffer environmental variability at spatial scales of local or population networks. Early survivorship and production of larvae may be relatively high across a rather wide range of variability in salinity (5–32‰). Plastic responses to low salinity would therefore contribute to maintain a certain degree of population connectivity and persistence regardless of habitat heterogeneity. Electronic Publication  相似文献   

4.
饥饿对中华绒螯蟹(Eriocheir sinensis)幼体发育的影响   总被引:3,自引:0,他引:3  
对刚孵化的中华绒螯蟹第一期的蚤状幼体经不同时间的饥饿后再投喂,发现饥饿可以明显降低幼体的存活率和延长幼体的发育期。实验表明:对中华绒螯蟹第一期的蚤状幼体的饥饿时间(t)和发育期长(D)呈线性关系(D=4.6303+1.3226t r=0.970p<0.01)。对于中华绒螯蟹第一期的蚤状幼体,当起始饥饿时间超过了4d,再予以投饵,幼体均不能恢复正常的发育和蜕皮功能,得出中华绒螯蟹的不可恢复点(the point of no-return,PNR)大约为4d。通常以产生50%的幼体死亡的饥饿期即PNR50,来表明幼体对饥饿的抵抗能力,实验得出中华绒螯蟹第一期的蚤状幼体的PNR50大约为48h。  相似文献   

5.
温度对花斑副沙鳅仔鱼发育、摄食及不可逆点的影响   总被引:1,自引:0,他引:1  
2011年4~5月,研究了温度对花斑副沙鳅(Parabotia fasciata)早期仔鱼的发育、初次摄食时间、群体摄食率及不可逆点(PNR)的影响。结果发现,花斑副沙鳅仔鱼出膜后2 d已开始摄食;初次群体摄食率最高值出现在卵黄囊耗尽后的1~2 d,花斑副沙鳅仔鱼的摄食强度随温度升高而增大。仔鱼抵达PNR的时间随温度升高而缩短:22℃时,仔鱼的PNR出现在出膜后的8.0~9.0 d;26℃时,PNR为7.0 d;28℃时,PNR为5.5 d;30℃时,PNR为5.0 d。最大初次摄食率至PNR之间为不可逆饥饿期,22℃时为3.5 d,30℃时仅为1.5 d,说明温度越高,仔鱼耐受饥饿的能力越差,越不利于仔鱼的存活。研究认为,温度对花斑副沙鳅仔鱼发育、摄食及不可逆点的影响较大;在苗种培育过程中,应根据温度确定投饵时间,适时投饵对仔鱼的成活显得尤其重要。  相似文献   

6.
The semiterrestrial crab Neohelice (=Chasmagnathus) granulata (Dana 1851) is a predominant species in brackish salt marshes, mangroves and estuaries. Its larvae are exported towards coastal marine waters. In order to estimate the limits of salinity tolerance constraining larval retention in estuarine habitats, we exposed in laboratory experiments freshly hatched zoeae to six different salinities (5–32‰). At 5‰, the larvae survived for a maximum of 2 weeks, reaching only exceptionally the second zoeal stage, while 38% survived to the megalopa stage at 10‰. Shortest development and negligible mortality occurred at all higher salt concentrations. These observations show that the larvae of N. granulata can tolerate a retention in the mesohaline reaches of estuaries, with a lower limit of ca. 10–15‰. Maximum survival at 25‰ suggests that polyhaline conditions rather than an export to oceanic waters are optimal for successful larval development of this species. In another experiment, we tested the capability of the last zoeal stage (IV) for reimmigration from coastal marine into brackish waters. Stepwise reductions of salinity during this stage allowed for moulting to the megalopa at 4–10‰. Although survival was at these conditions reduced and development delayed, these results suggest that already the zoea-IV stage is able to initiate the reimmigration into estuaries. After further salinity reduction, megalopae survived in this experiment for up to >3 weeks in freshwater, without moulting to juvenile crabs. In a similar experiment starting from the megalopa stage, successful metamorphosis occurred at 4–10‰, and juvenile growth continued in freshwater. Although these juvenile crabs showed significantly enhanced mortality and smaller carapace width compared to a seawater control, our results show that the late larval and early juvenile stages of N. granulata are well adapted for successful recruitment in brackish and even limnetic habitats.  相似文献   

7.
Larvae of the crab Chasmagnathus granulata were collected in a salt marsh located in the Lagoa dos Patos, Brazil and reared from eclosion to metamorphosis under different dietary regimes. Larvae reared individually in beakers of 40 ml and fed Tetraselmis chuii (zoea III and zoea IV), showed a supplementary stage, here designated as zoea V, with morphological characteristics intermediary between zoea IV and megalopa. No zoeae V molted to megalopa stage. To confirm the occurrence of the supplementary stage, mass cultures of larvae of C. granulata were fed Artemia sp. at high densities, we again detected the fifth zoeal instar. However, when zoeae V were individually placed in beakers and fed Artemia nauplii, they succeeded in molting into megalopae. We observed the occurrence of two types of zoeae IV — a smaller type (from which originated the zoeae V) and a larger type (which directly developed into megalopae). We conclude that stressful nutritional/environmental conditions were responsible for the occurrence of this alternative path of development.  相似文献   

8.
The effects of the timing of initial feeding (0, 1, 2, 3 and 4 days after yolk exhaustion) and temperature (15, 18 and 21° C) on the point‐of‐no‐return (PNR), survival and growth of laboratory‐reared Japanese flounder Paralichthys olivaceus larvae were studied under controlled conditions. The larvae reached PNR on 7·7, 5·2 and 4·2 days‐post‐hatching (dph) at 15, 18 and 21° C, respectively. At each temperature, larval growth did not differ significantly among the delayed initial feedings 1 day before PNR but decreased significantly in larvae first fed after that. In the treatments where initial feeding was equally delayed, larvae grew significantly faster at 18 and 21° C than at 15° C. The larvae survived apparently better at 15 and 18° C than at 21° C when initial feeding was equally delayed. At each temperature, survival of the larvae first fed before PNR did not differ noticeably, while delayed initial feeding after that apparently reduced their survival. These results indicated that there existed a negatively temperature‐dependent PNR in the Japanese flounder larvae. Survival and growth of the larvae strongly depended on temperature as well as the timing of initial feeding. High temperature accelerated the yolk exhaustion and growth of the larvae and thus reduced their starvation tolerance and survival. To avoid potential starvation mortality and obtain good growth, the Japanese flounder larvae must establish successful initial feeding within 2 days after yolk exhaustion at 15° C and within 1 day at both 18 and 21° C.  相似文献   

9.
The influence of starvation on larval development of the spider crabHyas araneus (L.) was studied in laboratory experiments. No larval stage suffering from continual lack of food had sufficient energy reserves to reach the next instar. Maximal survival times were observed at four different constant temperatures (2°, 6°, 12° and 18 °C). In general, starvation resistance decreased as temperatures increased: from 72 to 12days in the zoea-1, from 48 to 18 days in the zoea-2, and from 48 to 15 days in the megalopa stage. The length of maximal survival is of the same order of magnitude as the duration of each instar at a given temperature. Sublethal limits of early starvation periods were investigated at 12 °C: Zoea larvae must feed right from the beginning of their stage (at high food concentration) and for more than one fifth, approximately, of that stage to have at least some chance of surviving to the next instar, independent of further prey availability. The minimum time in which enough reserves are accumulated for successfully completing the instar without food is called point-of-reserve-saturation (PRS). If only this minimum period of essential initial feeding precedes starvation, development in both zoeal stages is delayed and mortality is greater, when compared to the fed control. Starvation periods beginning right after hatching of the first zoea cause a prolongation of this instar and, surprisingly, a slight shortening of the second stage. The delay in the zoea-1 increases proportionally to the length of the initial fasting period. If more than approximately 70 % of the maximum possible survival time has elapsed without food supply, the larvae become unable to recover and to moult to the second stage even when re-fed (point-of-no-return, PNR). The conclusion, based on own observations and on literature data, is that initial feeding is of paramount importance in the early development of planktotrophic decapod larvae. Taking into account hormonal and other developmental processes during the first moult cycle, a general hypothesis is proposed to explain the key role of first food uptake as well as the response pattern of the zoea-1 stage to differential starvation periods.Contribution to research project Experimentelle Marine Ökosystemanalyse sponsored by Bundesministerium für Forschung und Technologie, Bonn (Grant No. MFU-0328/1).  相似文献   

10.
In marine benthic invertebrates with complex life cycles, recruitment success, juvenile survival, and growth may be affected by variation in both maternal factors and environmental conditions prevailing during preceding embryonic or larval development. In an estuarine crab, Chasmagnathus granulata, previous investigations have shown that initial larval biomass is positively correlated with the biomass of recently extruded eggs, and it depends also on the salinity experienced during embryogenesis. Biomass at hatching has consequences for the subsequent larval development which, in this species, comprises two alternative developmental pathways with four or five zoeal instars (short or long pathway) and a megalopa. Larvae hatching with a lower than average biomass tend to develop through the long pathway and metamorphose to megalopae with higher biomass. In the present study, we show experimentally that the long pathway produces also significantly larger juveniles (crab size measured as carapace width, biomass as dry mass, carbon and nitrogen contents). Compared with juveniles originating from the short pathway, those from the long pathway showed in successive instars longer moulting cycles and larger carapace width, but lower size increments at ecdysis. In consequence, differences in size or biomass of long pathway vs short pathway crabs tended to disappear in later instars (after stage V). Furthermore, we tested in juveniles the tolerance of starvation at three salinities (5‰, 15‰, 32‰). Tolerance of starvation was significantly higher in juveniles originating from the long pathway, indicating higher energy reserves. While salinity played only a minor role for survival, it exerted significant effects on the time of moulting to the second juvenile instar, regardless of the preceding developmental pathway. The biomass of first juveniles obtained from the short pathway showed a significant positive correlation with the biomass of the freshly hatched zoea I, but not in those from the long pathway. In conclusion, the fitness of juvenile C. granulata is linked with previous developmental processes and environmental conditions during the embryonic and larval phase. Hence, a better understanding and prediction of the recruitment success of marine benthic invertebrates with a complex life cycle may require more comprehensive life‐history investigations.  相似文献   

11.
As a consequence of the combined effects of prey patchinessand diel or tidal vertical migrations in the water column, decapodcrustacean larvae may experience temporal or spatial variabilityin the availability of planktonic food. In a laboratory study,we evaluated effects of temporarily limited access to prey onthe larvae of three species of brachyuran crabs, Chasmagnathusgranulata, Cancer pagurus and Carcinus maenas. Stage-I zoeaewere fed ad libitum for 4 or 6 h per day (20 or 25% treatments;6 h tested in C. pagurus only), and rates of larval survivaland development were compared with those observed in continuouslyfed control groups (24 h, 100%). In C. granulata, we also testedif intraspecific variability in initial biomass of freshly hatchedlarvae originating from different broods has an influence onearly larval tolerance of food limitation. Moreover, we exposedembryos and larvae of this estuarine species to moderately decreasedsalinities to identify possible interactions of osmotic andnutritional stress. Finally, we evaluated in this species theeffect of food limitation on survival from hatching throughall larval instars to metamorphosis. In all three species, limitedaccess to prey had only weak or insignificant negative effectson survival through the Zoea-I stage. The strength of the effectsof temporary food limitation varied in C. granulata significantlyamong broods. However, no significant relationships were foundbetween initial larval biomass (C content) and either survivalor development duration. Strongly decreased survival to metamorphosiswas found when food limitation continued throughout larval development.Thus, early brachyuran crab larvae are well adapted to transitorylack of planktonic food. The capability of the Zoea-I stageof C. granulata to withstand nutritional stress also under conditionsof concomitant salinity stress allows them to exploit variousbrackish environments within estuarine gradients. However, continuedexposure to limited access to planktonic prey may exceed thenutritional flexibility of C. granulata larvae.  相似文献   

12.
Effects of feeding and starvation on the moult cycle and on the ultrastructure of hepatopancreas cells were studied in Stage I lobster larvae (Homarus americanus Milne-Edwards). The relative significance of yolk and first food was quite different in larvae originating from two females. This difference was evident also in the amounts of stored lipid in the R-cells of the larval hepatopancreas. Most larvae from one hatch were, in principle, able to develop exclusively with yolk reserves (without food) to the second instar. The larvae from the second hatch showed lecithotrophic development only to the transition between late intermoult and early premoult (Stages C/D0 of Drachs's moult cycle) of the first larval instar. When initial starvation in this group lasted for 3 days or more, the point of no return (PNR) was exceeded. After the PNR, consumption of food was still possible, but development ceased in the transition C/D0 or in late premoult (D3–4). It is suggested that these stages of the moult cycle are critical points were cessation of development and increased mortality are particularly likely in early larval lobsters under nutritional stress. Examination of hepatopancreas R-cells suggested that the PNR is caused by an irreversible loss of the ability to restore lipid reserves depleted during initial starvation. Initial periods of starvation ending before the PNR prolonged mainly Stage D0 of the same instar (I). During this delay, structural changes in the R-cells caused by the preceding period of starvation were reversed: reduced lipid inclusions, swollen mitochondria, an increased number of residual bodies indicating autolysis, and a reduction of the microvillous processes. Continually starved larvae which showed lecithotrophic development throughout the first instar and were then re-fed after moulting successfully, had later a prolonged intermoult (Stage C) period in the second instar. This shows that, despite occasional lecithotrophy, food is an important factor in early larval development of the lobster.  相似文献   

13.
The effect of salinity variation (0, 7, 14, 21, 28 and 35S) on survival, moulting and respiratory metabolism of the early zoeal stages of the shrimps Palaemon pandaliformis and P. northropi from the northern coast of the State of São Paulo, Brazil is investigated. Freshly hatched larvae were maintained at 20 °C, in each salinity for a maximum of seven days. Oxygen consumption measurements were made at 20 °C for each salinity using Cartesian diver microrespirometers. In 0S, all P. northropi zoeae died after 24 h while 24% of the P. pandaliformis zoeae survived until 4 days. Zoeae of both species survived poorly in 7S, the best survival for the two species (90%) being registered in 28%.S. Palaemon northropi zoeae did not survive 35S while 45% survival was recorded for P. pandaliformis zoeae in this medium after seven days. Moulting did not occur in zoeae of either species in 0%.S, nor in P. northropi in 7S. The metabolism-salinity curve for P. pandaliformis zoea I is very stable over the range 0–21S while that for P. northropi exhibits complete salinity independence from 21–35 S. Thus, while the early zoeal stages, at least, are conspecific, both developing in the same environment as part of the coastal zooplankton community, they clearly maintain distinct physiological characteristics. The data presented possibly reflect genetic adaptations to the adult biotope already manifested in the first zoeae.  相似文献   

14.
We investigated the effects of the timing of first feeding (larvae in F0, F1, F2, F3 and S were first fed on day 3, 4, 5, 6 days after hatching (DAH) and unfed, respectively) on feeding, morphological changes, survival and growth in miiuy croaker larvae at 24°C. The fed larvae initiated feeding on 3 DAH and reached point of no return (PNR) on 6 DAH. Larvae in F0 and F1 groups survived apparently better than F2 group at the end of the experiment on 36 DAH. High larval mortality occurred from 3 to 7 DAH in all feeding groups, accounting for 40% (F0, F1 and F2 groups) to 90% (F3 and S groups) of the total mortality. Larvae in F0 and F1 groups grew better than F2 group throughout the experiment. Eye diameter, body height, head height and mouth gape of the first feeding larvae were more sensitive to starvation than other morphometrics and could be used as indicators for evaluating their nutritional status. Results indicated that delayed first feeding over 1 day after yolk exhaustion could lead to poor larval survival and growth. To avoid starvation and obtain good growth in culturing, larvae feeding should be initiated within 1 day after yolk exhaustion at 24°C.  相似文献   

15.
The effect of constant and fluctuating salinity on larval development and metamorphosis of the sand dollar Dendraster excentricus was investigated in the laboratory. Sand dollar larvae at different stages of development were kept either at 32‰ (controls), exposed to constant low salinity (22‰) throughout development, or exposed to fluctuating salinity (i.e. transferring larvae from 32‰ to 22‰ for 7 days then back to 32‰ for the rest of their development). Larvae exposed to constant low salinity were significantly smaller but developed all larval arms at a slower rate than larvae in all other treatments. Larvae exposed to fluctuating salinity recovered and developed significantly longer larval arms and bigger rudiments than larvae kept at constant low salinity. Larvae exposed to fluctuating salinity produced more juveniles than larvae at constant high salinity (32‰), while those at constant low salinity produced few or no juveniles. Four-arm larvae exposed to fluctuating salinity produced significantly more juveniles than six-arm larvae exposed to the same treatment. Transferring competent 8-arm larvae from 31‰ to 15‰ for 2 days then back to 31‰, induced metamorphosis with juvenile production being significantly higher than for those kept at a constant salinity of 20, 25 and 31‰. This study indicates that a short-term decrease in salinity might induce metamorphosis for this species.  相似文献   

16.
During the spawning season of the estuarine prawn Metapenaeus bennettae (Racek & Dall), laboratory and field experiments were conducted to examine the combined effects of temperature and salinity on hatching success of eggs and the survival, growth and development of larvae. Response surface analysis showed that optimal levels of temperature and salinity for maximum hatching success varied depending on conditions during spawning. Similarly, temperature and salinity conditions that produced maximum survival and growth of larvae depended on conditions during rearing prior to experimental temperature/salinity treatments. At the onset of feeding, larvae showed the lowest tolerance to changes in temperature and salinity. Supplementary feeding experiments in the laboratory, and survival rates in field experiments indicated that starvation was a more potent factor than the effects of temperature and salinity in determining survival through the protozoeal larval stages. Late larval stages were relatively indifferent to the effects of temperature and salinity. It is suggested that, during early development, adaptive response to the prevailing physical conditions enhances survival in an estuarine environment.  相似文献   

17.
The effects of starvation on larval growth, survival, and metamorphosis of Manila clam Ruditapes philippinarum at the temperature of 19.6–21.6 °C, the salinity of 34‰ and pH of 8.0 were investigated from May 18 to July 18, 2006. In this study, the early, middle and late umbo-veliger larvae with the shell lengths of 100, 140, and 190 μm were subject to temporary food deprivation for up to 4.5, 20, and 25d at 0.5, 4, 5d intervals, followed by refeeding for the remaining of a 24, 20, 25d period, respectively. The results suggested that the larvae should have shown considerable tolerance to starvation due to their endogenous and exterior nutrition material, for larvae and time to the point-of-no-return (PNR: the threshold point during starvation after which larvae could no longer metamorphose even if food is provided) were calculated to be 4.25, 17.54, and 22.17d. As the starvation period prolonged, the mean shell length of larvae starved got close to constants at 1.5, 4, and 15d after starvation, which were different for larvae at different stages when starvation began, survival of larvae decreased, and was lower in treatments starved earlier in development than those starved later, for the early, middle and late umbo-veliger larvae, after 4.5, 20 and 25d of starvation period, few larvaes were alive. After starvation period, the alive larvaes were able to metamorphose and had a capability of compensatory growth when refeeding was given. Starvation not only affected metamorphosis rate, but also caused the delay in the time to metamorphosis and the decrease in the metamorphosed sizes. For example, for the continuously-fed larvae, duration to metamorphosis was 20.7d, for larvae with a size of 100-μm starved for up to 4d, larvae with a size of 140-μm starved for up to 16d, larvae with a size of 190-μm starved for up to 20d, duration to metamorphosis were 29.7, 31.7, and 37.7d, the delay in duration to metamorphosis were 9, 11, and 17d, respectively. Furthermore, importance of nutrition material for maintaining larval survival during starvation and the compensatory growth on larvae at the same feeding time were discussed.  相似文献   

18.
The combined effects of temperature and salinity on larval development and attachment of Balanus trigonus Darwin (Cirripedia, Balanidae) was examined under controlled laboratory conditions. Whilst larval survivorship was not affected (>70%), the duration of larval development was significantly affected by temperature and salinity. The effect of temperature was comparatively stronger than that of salinity. The majority of nauplius II larvae metamorphosed into cypris stage after 4-5 and 10-11 days at 28 °C (22-34‰) and 18 °C (22-34‰), respectively. Temperature, salinity and the duration of assay had a significant effect on cypris attachment with significant interaction among these main effects. Maximum (>80% in 6 days) and minimum percent attachment (0% in 6 days) on polystyrene surfaces were observed at 24 °C (34‰) and 18 °C (22‰), respectively. At high temperature (28 °C) and low salinity (22-26‰), larvae rapidly (4 days) developed into cyprids, but less than 33% attached. These results suggest that low larval attachment rates may lead to the low recruitment of B. trigonus in Hong Kong waters during summer when the water temperature is high (about 28 °C) and salinity is low (<26‰).  相似文献   

19.
We studied interrelationships between initial egg size and biomass, duration of embryogenesis at different salinities, and initial larval biomass in an estuarine crab, Chasmagnathus granulata. Ovigerous females were maintained at three different salinities (15‰, 20‰ and 32‰); initial egg size (mean diameter), biomass (dry weight, carbon and nitrogen) as well as changes in egg size, embryonic development duration, and initial larval biomass were measured.

Initial egg size varied significantly among broods from different females maintained under identical environmental conditions. Eggs from females maintained at 15‰ had on average higher biomass and larger diameter. We hypothesise that this is a plastic response to salinity, which may have an adaptive value, i.e. it may increase the survivorship during postembryonic development. The degree of change in egg diameter during the embryonic development depended on salinity: eggs in a late developmental stage were at 15‰ significantly larger and had smaller increment than those incubated at higher salinities. Development duration was longer at 15‰, but this was significant only for the intermediate embryonic stages. Initial larval biomass depended on initial egg size and on biomass loss during embryogenesis. Larvae with high initial biomass originated either from those eggs that had, already from egg laying, a high initial biomass (reflecting individual variability under identical conditions), or from those developing at a high salinity (32‰), where embryonic biomass losses were generally minimum. Our results show that both individual variability in the provisioning of eggs with yolk and the salinity prevailing during the embryonic development are important factors causing variability in the initial larval biomass of C. granulata, and thus, in early larval survival and growth.  相似文献   


20.
The solitary ascidian Styela plicata (Lesueur) is a common member of epibenthic marine communities in Hong Kong, where seawater experiences extensive seasonal changes in temperature (18-30 °C) and salinity (22-34‰). In this investigation, the relative sensitivity of different developmental stages (i.e., duration of embryonic development, larval metamorphosis and post-larval growth) to various temperature (18, 22, 26 and 30 °C) and salinity (22‰, 26‰, 30‰ and 34‰) combinations is reported. Fertilized eggs did not develop at lower salinities (22‰ and 26‰). At higher salinities (30‰ and 34‰), the duration of embryonic development increased with decreasing temperature (18 °C: 11.5±0.3 h; 30 °C: 8.5±0.3 h). More than 50% of larvae spontaneously attached and metamorphosed at all the levels of temperature and salinity tested. At higher temperatures (22, 26 and 30 °C) and salinities (30‰ and 34‰), functional siphon developed in about 72 h after hatching, whereas at low temperature (18 °C), siphon developed only in <30% of individuals in about 90 h. However, none of the metamorphosed larvae developed subsequently at low salinity (22‰). When forced to swim (or delayed attachment), larvae lost about 0.27 mJ after 48 h (about 22% of the stored energy). Such a drop in energy reserves, however, was not strong enough to cause a significant impact on post-larval growth. This study suggests that temperature and salinity reductions due to seasonal monsoon may have significant effect on the embryo and post-larval growth of S. plicata in Hong Kong.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号